

Cluster Management Service

Configuration Reference

27-July-2021

Release 5.4

Andrew Hanushevsky

ii 27-July-2021 Configuration

©2003-2021 by the Board of Trustees of the Leland Stanford, Jr., University

All Rights Reserved

Produced under contract DE-AC02-76-SFO0515 with the Department of Energy
This code is open-sourced under a GNU Lesser General Public license.

For LGPL terms and conditions see http://www.gnu.org/licenses/

http://www.gnu.org/licenses/

Clustering Configuration Contents

Configuration 27-July-2021 iii

1 Introduction.. 5

1.1 Directives and Components ...9

1.1.1 Clusters with 64 or fewer data servers.. 10

1.1.2 Clusters with 65 or more data servers .. 12

1.1.3 Frequently asked questions .. 15

1.2 Before you get started… ...17

1.3 Starting the cmsd Process...19

1.3.1 Multiple Instances and Automatic Fencing ... 24

1.3.2 Log File Plug-Ins .. 25

1.3.3 Files created by cmsd... 26

1.3.4 Exported Environment Variables .. 27

2 Mandatory Configuration Directives 29

2.1 manager ..29

2.1.1 Choosing all vs. any for Normal Managers ... 32

2.1.2 Peer Manager File Location and Selection ... 33

2.1.3 Disjoint Cluster Configurations ... 35

2.2 role ..37

2.2.1 Role Summary Table.. 38

3 Common Configuration Directives .. 41

3.1 allow..41

3.2 defaults (an oss directive) ..43

3.3 dfs..45

3.4 export ..51

3.5 localroot (an oss directive) ...53

3.6 perf ..54

3.7 prep ...57

3.7.1 Optional Prepare Interface Program Requirements 59

3.8 sched ...63

3.9 seclib..69

3.10 space..70

3.11 space (an oss directive)...72

4 Esoteric Configuration Directives ... 73

4.1 altds ...73

4.2 blacklist ...74

4.3 cidtag...76

4.4 conwait..77

4.5 delay..79

4.5.1 Relationship Between hold & lookup Delay vs. qdl 83

Contents Clustering Configuration

iv 27-July-2021 Configuration

4.6 fxhold .. 84

4.7 fsxeq .. 85

4.8 namelib (an oss directive) .. 87

4.9 nbsendq .. 89

4.10 nowait ... 91

4.11 osslib (an ofs directive) .. 92

4.12 pidpath ... 93

4.13 ping ... 95

4.14 prepmsg .. 97

4.15 remoteroot (an oss directive) ... 99

4.16 repstats.. 100

4.17 request .. 101

4.18 subcluster.. 102

4.19 superport .. 103

4.20 vnid ... 104

4.20.1 Using Virtual Network Identifiers .. 105

4.20.2 Virtual Network Identifiers and Kubernetes ... 107

4.21 trace... 108

4.22 whitelist .. 109

5 Blacklist and Whitelist File Format 111

6 Document Change History .. 113

Clustering Configuration Introduction

Configuration 27-July-2021 5

1 Introduction

This document describes Cluster Management Service Distributed configuration

directives. This component provides dynamic load balancing of files and name-

space consolidation of distributed data regardless of location. The cms (Cluster

Management Services) component is meant to be used with xrootd’s Open File

System (ofs) component. Refer to the “XRootD ofs & oss Reference” for detailed

information.

Directives for cmsd, the clustering daemon and its client counterpart used by the ofs

component, come from a configuration file. The configuration file is mandatory and

its location is specified on the command line using the -c option.

The characters cms must prefix each cmsd-specific directive in the configuration file.

Directives that apply to multiple components must be preceded by the characters

all. This makes cmsd directives compatible with the xrootd’s other configurable

components and allows you to use a single configuration file. Having a single

configuration file is important because the cmsd must also inspect directives

destined to the oss (Open Storage System) component. These are prefixed by oss.

Having one configuration file makes this task transpaprent.

Records that do not start with a recognized identifier are ignored. This includes blank

record and comment lines (i.e., lines starting with a pound sign, #). This guide

documents the all, cms and oss configuration directives that are relevant to the

cmsd.

Refer to the manual “Configuration File Syntax” on how to specify and use

conditional directives and set variables. These features are indispensable for

complex configuration files usually encountered in large installations.

Clustering is performed by a set of cooperating servers. One or more cmsd daemons

run in manager mode and can be used by one or more xrootd’s to determine where

to redirect a client’s file request. The request can only be redirected to a machine that

is running a cmsd in server or supervisor mode. There can be up to 64 cmsd servers.

Each machine can run one or more xrootd’s. The following figure illustrates a simple

minimal system.

Introduction Clustering Configuration

6 27-July-2021 Configuration

In the diagram, there are three hosts: x, y, and z. Host y serves as the redirector.

Hosts x and z are the hosts that can be used to serve data to clients. Consequently,

host y runs a manager cmsd while hosts x and z run server cmsd’s.

The servers connect to the manager and provide load and file information. The

xrootd running on host y connects to the manager as well. However, the xrootd on

host y uses the manager to determine which server to direct client requests. It does

not serve any actual data files.

The typical open request is handled in four steps:

1. The client directs the open request to the xrootd that runs on the

manager’s host.

2. The xrootd asks the cmsd manager which machine is the best to use to

process the file. The manager determines the best machine using a variety

of configurable parameters.

3. The xrootd on host y tells the client, in this example, that host z is the best

host to use for the file.

4. The client then redirects the request to the xrootd running on host z.

cmsd

xrootd

cmsd cmsd

Host x Host y Host z

Client

1 3 4

2

xrootd

xrootd

cmsd client

all.role server

all.role manager

all.role server

Figure 1.1.1-1: Client-Server Clustering Dynamics

Clustering Configuration Introduction

Configuration 27-July-2021 7

In order to make the system as flexible as possible, the manager cmsd does not

know how many or which hosts will acts as servers. For security purposes, you can

restrict hosts based on host name as well as by NIS netgroup. Thus, servers

essentially subscribe to the manager claiming that they have file resources. During

the subscription process, each server indicates the file paths to which it is willing to

provide data access. Periodically, the manager cmsd requests load information from

each server. Each server reports CPU, network I/O, queue, memory, paging load as

well as free space. This information is used to select the best available server for an

open request.

The decision is tempered whether or not the server already has the file on disk or

whether the file must be staged to disk from a Mass Storage System. The manager

may decide that all available servers are too loaded and force a file to be replicated

on a less loaded server. This provides additional data paths to the file. Replicated

load balancing is only compatible with read-only files. The manager can direct

client’s to a writable version of a files but only on servers that have indicated that

they offer write access on the associated path. In general, only one such server may

exist for each particular path.

In order to provide a fully redundant service, all servers may be replicated and

cross-connected, as full full crossbar configuration shows above.

xrootd xrootd xrootd

cmsd

Host x Host

y2
Host z

xrootd

Host

y1

cmsd cmsd cmsd

Figure 1.1.1-2: A Fully Redundant Cluster Configuration

 all.role manager all.role manager all.role server all.role server

Introduction Clustering Configuration

8 27-July-2021 Configuration

Each server cmsd subscribes to two manager cmsd’s. Each xrootd that can redirect

clients subscribes to two managers. Thus, the loss of any single manager xrootd does

not affect load balancing. More complex arrangements are possible since each server

may have any number of managers and each xrootd can subscribe to any number of

managers.

In order to ease migration, any peripheral (i.e., data server) xrootd can always be

directly used. This means that redirection only occurs when a client contacts a

redirecting xrootd. For systems that are being configured this way for the very first

time, you should always use the “xrd.port any” directive for data server xrootd’s.

This allows the xrootd to use an arbitrary port number. In this mode it is very

difficult for any client to directly use a data server xrootd without first contacting the

manager xrootd first.

Clustering Configuration Introduction

Configuration 27-July-2021 9

1.1 Directives and Components

Clustering consists of four distinct components:

1. The manager cmsd process (typically in a separate machine).

2. Supervisor cmsd processes (only for clusters of more than 64 servers).

3. Server cmsd processes, and

4. An integrated cmsd client in the xrootd process, which can be a manager,

supervisor, or server.

A manager cmsd always communicates with supervisor and server cmsd’s as well

as a manager xrootd. Server xrootd’s only communicate with their server cmsd

counterpart. Two distinct directives are used to identify the participants:

1. all.role which tells each component whether it is to function as a manager,

supervisor, or server; and

2. all.manager that tells each component the DNS name of the manager.

Introduction Clustering Configuration

10 27-July-2021 Configuration

1.1.1 Clusters with 64 or fewer data servers

Use the following general steps to successfully configure a cluster that has 64 or

fewer data servers:

 Determine which servers will be used for data serving (i.e., run a data server

cmsd) and which for redirection (i.e., run a manager cmsd). A manager is not

capable of also serving data. Use the “all.role” directive to differentiate

servers and managers.

 Use the allow directive to restrict the set of valid data servers.

 Determine the scheduling policy using the cms.sched and cms.space

directives.

 Determine which port number will be used for inter-server communication

and specify it for the manager cmsd using the mandatory all.manager

directive (see below).

 Remember to specify the xrootd port number for the associated manager

xrootd using the xrd.port directive, if the default of 1094 is unacceptable.

 Determine the set of data servers. Unless direct access is important, you

should configure data servers with “xrd.port any”.

 For each data server, determine which file paths it will handle. In general, a

number of servers should serve the same path.

 Use the all.export directive on each data server to restrict it to its set of paths.

 If a data server will be also creating files, use the space directive to indicate

which file systems may be used for file creation.

 Use the all.manager directive to tell each xrootd and cmsd the location of its

set of managers.

 Start a data server cmsd server on each xrootd data server machine. For each

xrootd that will be redirecting, use the all.role manager directive to enable

redirection mode.1

 Start the manager, server, and xrootd. See the cmsd command described in

the next section. The start-up order is not important.

1 Refer to the “xrootd ofs & oss Configuration Guide” for more information.

Clustering Configuration Introduction

Configuration 27-July-2021 11

The following diagram and corresponding configuration file illustrates how to

cluster 30 data servers with two managers.

Specify the data server port number. This is only relevant to

managers, so we qualify the specific port number using the “if”.

xrd.port any

xrd.port 1094 if man01.u.org man02.u.org

Specify which paths are to be exported (default is r/w)

all.export /data

Tell everyone the role it will have. Use a default of server but

qualify it depending on hostname using the “if”.

all.role server

all.role manager if man01.u.org man02.u.org

Tell everyone the location of each manager.

all.manager man01.u.org:1213

all.manager man02.u.org:1213

Tell the cmsd which machines are allowed to connect

cms.allow host man*.u.org

cms.allow host data*.u.org

Configuration “myconfig.cf” for a 30 Data Server Cluster

There are additional directives to further tune the system and are described on the

following pages.

Introduction Clustering Configuration

12 27-July-2021 Configuration

1.1.2 Clusters with 65 or more data servers

Configuring a cluster of more than 64 data servers is just slightly more complicated

than configuring a smaller cluster. The complication arises from the fact that some

additional management servers need to be started. The configuration file, however,

is no more complicated. Below are the steps you should take to successfully

configure large clusters.

 Choose the port numbers you wish to use for the manager xrootd and cmsd

servers. Typically, xrootd uses port 1094 and specified with the xrd.port

directive. For cmsd port 1213 is used and specified with the all.manager

directive. Other xrootd servers should specify “xrd.port any”.

 Choose the number of manager nodes you wish to run. You must configure at

least one manager node. The manager is the first point of contact for a client

and is also the cluster leader. A manager should run on a dedicated machine

of modest power (e.g., 2GB RAM, 1GHZ clock speed, 100Mb ethernet).

A manager node consists of

a) an xrootd configured with the “all.role manager” directive.

b) a cmsd configured with “all.role manager” directive.

You may configure more than one manager and run them in either fail-over

mode (the default) or in load balancing mode where each manager shares

part of the client load (see the all.manager directive). Each manager xrootd-

cmsd pair must run on a separate machine.

 Compute the number of supervisor nodes you need. A supervisor node acts

as a local manager for a group of 64 other nodes. These nodes may be data

servers or supervisors. A supervisor node consists of

a) an xrootd configured with the “all.role supervisor” directive.

Additionally, specify the “xrd.port any” directive.

b) a cmsd configured with the “all.role supervisor” directive.

You only need to configure supervisor nodes if you are running more than 64

data servers. The number of supervisor nodes is based on the number of

available manager plus supervisor slots. A recursive formula is needed to

calculate the minimum number. Since you normally wish to start more than

the minimum number of supervisors, a simplified formula can be used.

Clustering Configuration Introduction

Configuration 27-July-2021 13

Conservatively, you will need one supervisor node for each group of 64 data

servers. For instance, if you plan to run 500 data servers you will need the

upper limit of 500/64 supervisors (i.e., 8).

Each supervisor node can run on a data server node. If you wish to share

resources in this way, choose data server nodes that will be as lightly loaded

as possible. The performance requirements for a supervisor node are the

same as a manager node.

 Configure the data server nodes. A data server node delivers actual data to

clients. It consists of

a) an xrootd configured with the “all.role server” directive. Additionally,

specify the “xrd.port any” directive.

b) a cmsd configured with the “all.role server” directive.

Configure as many data server nodes as you need. Keep in mind that at least

one additional supervisor node is need for each group of 64 data servers.

The performance requirements are determined by the performance needs of

clients. The server should have enough disk space, adequate network

bandwidth (e.g., Gb ethernet), and significant cpu and i/o resources. If you

wish to use memory mapped files, then the node should have a

commensurate amount of real memory.

For example, assume you wish to cluster 99 data servers in the way shown below.

Here we wish to have only one manager. We will need at least one supervisor.

While the simplistic formula indicates two supervisors are needed; in practice, the

cluster could self-organize by affiliating 63 data servers and one supervisor (a total

of 64) with the manager and affiliating the remaining data servers (36) with the

supervisor.

Introduction Clustering Configuration

14 27-July-2021 Configuration

With two supervisors, the cluster would affiliate 62 data servers and two

supervisors with the manager, and split the remaining data servers across the two

supervisors. So, either configuration would work. Fortunately, the cluster attempts

to automatically find the best organization given the resources at hand.

Configuration files for small and large clusters will differ only slightly from each

other. Notable differences involve allow and role directives. Configuration file

simplicity relies on the use of regular names for various hosts.

Specify the data server port number. This is only relevant to

managers, so we qualify the actual port number using the “if”.

xrd.port any

xrd.port 1094 if man01.u.org

Specify which paths are to be exported (default is r/w)

all.export /data

Tell the cmsd which machines are allowed to connect

cms.allow host man01.u.org

cms.allow host sup01.u.org

cms.allow host data*.u.org

Indicate the role this server will have based on host name (the

default role is that of server)

all.role server

all.role supervisor if sup01.u.org

all.role manager if man01.u.org

Tell everyone the location of the manager.

all.manager man01.u.org:1213

Configuration “myconfig.cf” for a 99 Data Server Cluster

Clustering Configuration Introduction

Configuration 27-July-2021 15

1.1.3 Frequently asked questions

Does start-up order matter?

Generally, it does not matter in which order nodes are started. For the

efficiency minded, starting supervisor nodes ahead of data server nodes

allows the system to converge on a stable configuration faster.

How long will it take for the system to converge?

This depends on how many servers are in the configuration. Generally, it

takes approximately 1 to 13 seconds for a server to find its correct place in the

cluster. However, the process is run in parallel across all of the servers. So,

the system should converge in less than 30 seconds for a configuration of

about a 1,000 nodes. By default, the system delays full availability for 90

seconds, this should be sufficient time for convergence of even extremely

large installations.

What happens if I have too few supervisors?

If there are not enough supervisors relative to the number of data servers, one

or more data servers will be orphaned and unavailable. If you suspect this,

check the manager’s log. It will contain warnings about orphaned data

servers.

What happens if I have more supervisor nodes than I need?

Since the system tries to evenly distribute data servers across all available

supervisors, excess supervisors are used to further reduce the load on

supervisor nodes. The excess supervisors are also used as “hot spares” in the

event one of the supervisors becomes unavailable. You should configure as

many “extra” supervisors as you feel are necessary to provide a suitable level

of fault tolerance.

Can I run all the supervisors on a single node?

Yes, but you will need to assign each cmsd a unique instance name using the

–n option. Additionally, the same –n option value must be specified for the

xrootd that is paired with a particular cmsd. Use the “if” directive, keyed off

the instance name, to maintain a single configuration file. Finally, each

xrootd, other than the one tied to the manager cmsd, must be started with the

“port any” directive to allow for arbitrary port selection. You should realize

that running all of the supervisors on a single node creates a large single

point of failure.

Introduction Clustering Configuration

16 27-July-2021 Configuration

How do I run a data server and a supervisor on the same node?

Use the provided StartCMS and StartXRD scripts. For a supervisor cmsd and

xrootd, specify the “all.role supervisor”. For a data server cmsd and xrootd

specify the “all.role server” directive. You should make sure that “xrd.port

any” is specified for supervisor and data server xrootd’s to prevent any port

conflicts

What does the “–port any” xrootd command line option actually do?

The “-port any” option allows xrootd to choose any port that is available. The

selected port number is then forwarded to the cmsd. This allows the cmsd to

redirect clients to the proper port even though it’s not known ahead of time.

This only works if the cmsd is not started with the -i option (the default) and

the xrootd is started with the “all.role server” (for data servers) or all.role

supervisor” directive (for supervisors). This does not eliminate the need for

starting the manager cmsd and its xrootd counterpart with well-known ports

Does that mean I can use –port any to run multiple data servers on a single node?

Yes. See the answer to “Can I run all the supervisors on a single node?”

Can I use the –port any option to prohibit clients to bypass the cmsd?

Yes. This is actually recommended. Since arbitrary port numbers are chosen,

a client cannot directly connect to a data server without using the manager

xrootd. However, while significant programming effort is required to capture

port numbers at run-time; any “management by obscurity” method can be

defeated.

I want to run the cluster using Kubernetes, are there any admonitions?

Yes. Many container orchestration systems have assumptions that run

counter to running on bare hardware or even a standalone container. You

should do the following to avoid odd behavior:

a) Specify the dyndns option via the xrd.network directive.

b) Specify the cms.vnid directive for all data servers (xrootd and cmsd)

Clustering Configuration Introduction

Configuration 27-July-2021 17

Is there a preferred way of stopping a cmsd or xrootd process?

No. The simplest and most effective way to stop any XRootD component is to

use the kill command. The system is architected to withstand catastrophic

failure (e.g. a power failure). Please remember, when you kill a cmsd on a

data server node. Its redirector (i.e. manager or supervisor) will remember it

for a configurable amount of time (default is 10 minutes). If that server had

the only copy of a requested file, the redirector will delay the client with the

hope the server comes back. After the wait time is over and the server still has

not come back, the client will get a “file not found” error.

1.2 Before you get started…

It’s best to configure the xrootd daemon first and make sure it works as a regular

server. Configuring an xrootd daemon is much simpler than configuring a cmsd.

Plus, it gives you the opportunity to become familiar with how directives work;

especially the xrd directives.

The cmsd uses the xrd framework to drive all of its activities; so the xrd directives

directly control how the cmsd interacts with its environment. Whatever you choose

for the xrootd is likely to be best for the cmsd. Thus, you only need to go through

the exercise once.

Many of the command line options used for the xrootd also apply to the cmsd, thus

once you have determined the best settings for the xrootd you can carry over many

of those choices to the cmsd as well.

Finally, use a single configuration file for the xrootd and cmsd daemons. It makes

life far simpler and avoids making inconsistent choices between two configuration

files. In cases where a different choice is needed; use the if-else-fi directives to

special case your choices.

Clustering Configuration cmsd

Configuration 27-July-2021 19

1.3 Starting the cmsd Process

Use the following command to start a manager or server cmsd process.

cmsd -c cfn [-l largs] [-k {num | sz{k|m|g} | sig}] [opts]

largs: [=]fn | - | @lib[,bsz=sz][,cse={0|1|2}][,logfn=[=]fn]

opts: [{-a | -A} apath] [-b] [-d] [-i] [-I {v4 | v6}]

 [-n name] [-p port] [-s pfn] [-S site]

 [{-w | -W} hpath] [-z]

sig: fifo|hup|rtmin|rtmin+1|rtmin+2|ttou|winch|xfsz

Parameters

-c cfn The name of the configuration file. You must specify the name of a

configuration file even if it is empty.

Options

-l largs

Specifies how messages are to be handled. Options are:

fn Directs messages and any trace output to the indicated file, fn, possibly

qualified by the instance name (see the fencing section). By default,

messages are directed to standard error.

=fn Same as fn but the fn is not qualified by the instance name, if any. This

allows log files to be handled in an arbitrary manual way. For more

information see the section on fencing.

@lib Directs messages to a plug-in that is defined in the shared library

specified by lib (see the section on log file plug-ins). Additional

comma-separated parameters may follow lib, as follows:

bsz=sz Specifies the size of the speed matching buffer. The

default is 64K. Messages are placed in the buffer and

then forwarded to the plug-in as time permits. A value of

0 disables speed matching and messages are handed off

to the plug-in as they occur. See the section on log file

plug-ins for more information. A positive value less than

8K is forced to be 8K. The maximum allowed in one

cmsd Clustering Configuration

20 27-July-2021 Configuration

megabyte. The sz may be suffixed by k or m to indicate

kilobytes or megabyte, respectively.

cse={0|1|2} Specifies how standard error output should be handled:

0 Does not capture standard error output. All such

output is sent to the logfn destination, if specified, or

is otherwise lost. This is the default.

1 Captures standard error but only forwards it to the

logging plug-in if it starts with a standard time stamp.

This option may cause an infinite loop. Refer to the

logging plug-in section for more information.

2 Captures standard error output and forwards it to the

logging plug-in without inspection. Refer to the

logging plug-in section for more information.

logfn=[=]fn Specifies that messages are also to be routed to a local log

file. The parameter is identical to that described above.

To use standard error, specify a dash (-) for fn.

-k num | sz{k|m|g} | sig

Keep no more than num old log files. If sz is specified, the number of log files

kept (excluding the current log file) is trimmed to not exceed sz bytes. The sz

must be suffixed by k, m, or g to indicate kilobytes, megabyte, or gigbytes,

respectively. If a sig value is specified (i.e. hup etc), then an external program

is expected to handle log file rotation (e.g. logrotate). Except for fifo, the

argument specifies signal that causes the daemon to close and re-open the log

file to allow rotation to occur. When fifo is specified, the daemon waits for

data to appear on a fifo whose path is identical to the log file path but whose

name is prefixed by a dot. Refer to the notes for manual rotation caveats.

Esoteric Options

{-a | -A} apath

Specifies the default administrative path and can be overridden by the

adminpath directive in the configuration file. When -A is specified group

write access is allowed (see the adminpath directive group option in the

Xrd/Xrootd reference for details).

-b Runs the program in the background. You should also specify -l.

-d Turns on debugging. Warning! This severely impacts performance.

Clustering Configuration cmsd

Configuration 27-July-2021 21

-i The cmsd subscribes to a manager cmsd whether or not the local primary

data server contacts the cmsd. Also, see the cms.nowait directive.

-I {v4 | v6}

 Restricts the server’s internet address protocol. When v4 is specified, only

hosts with IPV4 addresses can connect or be connected to. When v6 is

specified, the default, hosts using IPV6 or IPV4 addresses can connect or be

connected to. This option is only useful for systems that have misbehaving

IPV6 network stacks. The default is established by the network interface

configuration on the machine at the time the program starts.

-n name

The instance name of the cmsd. There is no default. See the notes for more

information on this option.

-p port

The TCP port, or service name associated with a port, that the manager cmsd

is to use for new connections. There is no default. If the port is not specified

on the command line, it must be specified using the all.manger directive.

-s pfn Specifies the name of the file that is to hold the process id upon start-up.

-S site Specifies a 1- to 15-character site name that is to be included in monitoring

records. The name may only contain letters, digits and the symbols “_ -:.”; any

other characters are converted to a period.

{-w | -W} hpath

Specifies the default home path; i.e. the current working directory during

execution. If it is not specified on the command line, it can be specified by the

homepath directive in the configuration file. When -W is specified group read

access is allowed (see the xrd.homepath option for details). The hpath is

extended by any specified instance name (i.e. –n option). The path is created

should it not exist.

-z provides microsecond resolution for log file message timestamps.

Defaults
cmsd –l -

cmsd Clustering Configuration

22 27-July-2021 Configuration

Notes

1) A configuration file is not optional.

2) The same configuration file may be used for manager and server cmsd’s.

Directives not relevant to a particular mode of operation are ignored.

3) The cmsd related directives may be placed in the xrootd configuration file

as well. Thus only one configuration file needs to be maintained per

machine.

4) The order in which servers are started is unimportant.

5) When a signal value is specified, log files are not automatically renamed at

midnight. Instead an external program must be used to properly rotate log

files. Make sure to choose a signal that is not in use by any plug-in. If

unsure, choose one of the obscure signal names and monitor for any odd

behavior. Otherwise, use the fifo option. Be aware that on some non-

Linux platforms the fifo file descriptor may leak.

6) When fifo is specified the fifo file name must not exists or exist as a fifo

file. A simple “echo x >> /path/.lfn” causes the logfile to close and reopen.

7) The sig names, except for fifo, be fully capitalized as well prefixed by

“sig” or “SIG” when capitalized.

8) You must start at least one cmsd in manager mode. The number of

supervisor cmsd’s is approximately determined by dividing the number

of server mode cmsd’s by 64 less one.

9) In a supervisor role, the cmsd acts as both manager and server. Supervisor

cmsd’s are used to cluster groups of 64 server cmsd. Since a supervisor

cmsd can subscribe to a manager or supervisor cmsd, it is possible to

cluster together a virtually unlimited number of data servers.

Notes on Esoteric Options

1) Whenever the comapanion xrootd looses contact withits cmsd, the host

automatically becomes ineligible for selection until it reconnects

2) The –i option provides for a loose coupling between servers running on

the same host. The cmsd executes asynchronously from the host’s data

server and can subscribe to a manager before the data server is available

on the host.

3) The –i option is meant for to be used with data servers that are unable to

communicate with the local cmsd. You should not specify this option for

the xrootd server.

4) Warning: the default cmsd mode (i.e., wait for data server) must be used

in conjunction with xrootd’s configured for clustering; otherwise the host

will never be selected by the manager cmsd.

Clustering Configuration cmsd

Configuration 27-July-2021 23

5) Warning: The –i option disables port remapping. With port remapping, a

client is redirected to the port actually being used by the data server that is

the target of the redirection. This allows arbitrary or hidden ports to be

used, none of which need be the same. When port remapping is disabled,

clients are always redirected to the port they initially used to contact the

redirector.

6) The –b option forces the program into the background. If –l is not

specified; all output messages are discarded.

7) The -a, -b, -p, and -s command line options are meant to be used by start-

up scripts (e.g. init.d or systemd).

8) Warning: Command line options, except for –a and -s, over-ride

corresponding configuration file directives.

Example
cmsd –c /opt/xrootd/cmsd.cf

cmsd Clustering Configuration

24 27-July-2021 Configuration

1.3.1 Multiple Instances and Automatic Fencing

The cmsd supports running as many cmsd’s as you would like on the same host

(i.e., machine). This is accomplished by the –n command line option. This option

assigns an instance name to the cmsd. The cmsd uses instance name to maintain a

separate disk name space for files that it needs to create.

There is no default instance name; however, the system uses the word anon to refer

to unnamed cmsd’s. By design, there can only be one logical instance combination of

a manager, supervisor, and server running on the same machine. The -n option

allows you to create new logical instances by assigning each instance a different

name. This allows you to run multiple instances of the cmsd on the same machine.

Server and supervisor cmsd’s pose no port contention problems since they always

use whatever port happens to be free. Manager cmsd’s are assigned specific port

numbers (see the manager directive). Therefore, if you wish to run more than one

cmsd manager on a host, each manager must also be assigned a unique port

number.

The cmsd’s always work in pairs with xrootd’s. The pairing only works within the

same instance. That is, if a cmsd with an instance name of foo is to be used with a

particular xrootd; then that xrootd must be given an instance name of foo as well.

Additionally, the cmsd and xrootd home directories should differ to avoid core file

conflicts.

Failure to follow these directions will prevent proper communications from being

established between xrootd’s and cmsd’s.

Once an instance name is assigned to a daemon using the –n option, the system

automatically fences in the daemon so that it does not interfere with any other

xrootd processes running with it. Automatic fencing consists of threse actions:

 The instance name is suffixed to the adminpath to create a unique location for

temporary server files. For instance, if –n is not specified, xrootd creates

/tmp/.xrootd/admin as the path for the administrative interface. If “-n test” is

specified, xrootd creates /tmp/test/.xrootd/admin instead. Even the path

specified with the adminpath configuration directive is modified.

Clustering Configuration cmsd

Configuration 27-July-2021 25

 The instance name is used to create a new directory in the current working

directory. The current working directory is changed to this newly created path.

So, if “/home/xrootd” is the current working directory and “-n test” is specified;

the current working directory becomes “/home/xrootd/test”. This allows core

files to be segregated by instance name.

 The instance name is automatically inserted into the log file path specified via the

–l command line directive to create a unique location for server log files files. For

instance, if “–l /var/adm/xrootd/cmslog” is specified along with “-n test”, cmsd

modifies the –l argument to be /var/adm/xrootd/test/cmslog.

Automatic fencing of log files may, for some installations, run counter to the way log

files are commonly handled. You can disable fencing of log files by prefix the log file

path by an equals sign. However, you are then responsible to make sure that each

instance uses a different log file path or name.

1.3.2 Log File Plug-Ins

XRootD allows you to specify a plug-in to handle messages that would otherwise be

sent to a regular file or standard error. You do this using the ‘@’ qualifier with the –l

option. Logging messages is a critical function in the server and any delay will

severely impact server performance. The default logging path is very efficient and

any plug-in placed in the path should be just as efficient. To help, a speed matching

buffer is used to minimize plug-in vagaries. However, if you choose to not use a

speed matching buffer (i.e. a bsz of zero for synchronous operation) then the plug-in

becomes the choke point in server performance.

You may also choose to capture standard error output using the cse parameter.

However, this option will result in an infinite loop if your logging plug-in writes to

standard error for any reason. This may be mitigated by specifying cse=1 which only

sends standard error output to the plug-in if it starts with a timestamp of the form

“yymmdd hh:mm:ss”. All debugging output starts with such a timestamp.

The details on how you write a plug-in is detailed in the XrdSysLogPI.hh header

file. It is important to realize that if you use the XrdSysLogger object to route a

message from your plug-in, an infinite loop will result. Additionally, one log file

plug-in is used to all XrdSysLogger instances.

cmsd Clustering Configuration

26 27-July-2021 Configuration

1.3.3 Files created by cmsd

The following files are created by the cmsd:

Default File Type Modified by Purpose

<stderr> -l option and
-n option

Informational and error

messages

/tmp/[name/].olb/olbd TCP

Socket

adminpath
and -n option

Local xrootd – server cmsd

communications

/tmp/[name/].olb/olbd.super TCP

Socket

adminpath
and –n option

Local xrootd - supervisor

cmsd communications

/tmp/[name/].olbd/olbd.notes UDP

Socket

adminpath
and -n option

Local cmsd server event

notifications

/tmp/[name/].olbd/olbd.seton UDP
Socket

adminpath
and -n option

Local cmsd supervisor event
notifications

/tmp/[name/]cmsd.pid File pidpath and
–n option

Holds the process id.

<cwd>//[name/]core[.pid] File –n option Core file.

/tmp/xrootd.name.env File Adminpath
And -n option

Holds environmental

information (see the

xrd/xrootd reference).

1.3.3.1 Environmental Information File

The daemon writes environmental information in the directory specified by the –s

command line directive and if not specified, in /tmp. This information can be used to

automatically collect all relevant information about a daemon to facilitate automatic

problem resolution.

The environmental file is named “cmsd.name.env” where name is the instance name

and anon if no instance name was specified. The format of the information is shown

below. When parsing this information, you should not depend on the order shown

below.

Clustering Configuration cmsd

Configuration 27-July-2021 27

1.3.4 Exported Environment Variables

The following table shows the environment variable exported by xrootd. These may

be used by external programs and plug-ins, as needed. They should never be

modified.

XRD Variable Contents

XRDADMINPATH Is the directory for cmsd-specific files and sockets..

XRDCONFIGFN The path to the configuration file.

XRDCMSCLUSTERID The globally unique cluster identification for this host.

XRDDEBUG Set to one when the –d command line option is specified.

XRDHOST The current host’s DNS name.

XRDINSTANCE Is the string of the form “execname instance@hostname”.

Where execname is the executable’s name, instance is the

name specified via –n or anon if no instance name was

specified, and hostname is the current host’s DNS name.

XRDLOGDIR Is the directory where log files are written.

XRDNAME The name specified via –n or anon if no instance name was

specified.

XRDPROG The executable’s name.

XRDROLE The effective value specified on the all.role directive.

XRDSITE The site name specified either via the –s command line

option or the all.sitename directive.

If the standard oss plug-in is being used, the following additional environment

variables are exported.

OSS Variable Contents

XRDN2NLIB The path and name of the name-to plug-in, if specified via

the oss.namelib directive.

XRDRMTROOT The local root path specified by the oss.remoteroot directive.

XRDLCLROOT The local root path specified by the oss.localroot directive.

Clustering Configuration Directives

Configuration 27-July-2021 29

2 Mandatory Configuration Directives

This section describes directives that are must be specified to configure the Cluster

Management Service.

2.1 manager

all.manager [meta | peer | proxy] [all | any]

 host[+]{:portspec | portspec} [if conds]

portspec: port[%iname][@sname]

Function

Specify the manager cmsd location.

Parameters

meta Identifies the cmsd meta-managers that cmsd managers should subscribe to.

peer Identifies the cmsd peer managers that cmsd managers should subscribe to as

a peer manager.

proxy Identifies the cmsd managers that xrootd servers with proxy roles (i.e.,

“proxy” or “proxy server”) should subscribe to.

all Uses a load distribution algorithm to select an appropriate manager. See the

section “Choosing all vs. any” for non-peer managers and the section “Peer

Manager File Location” for peer managers to determine the best option for

your cluster.

any Uses a fail-over algorithm to select an appropriate manager. See the section

“Choosing all vs. any” for non-peer managers and the section “Peer Manager

File Location” for peer managers to determine the best option for your

cluster.

host The DNS name or IP address of the cmsd manager. If host ends with a plus

sign (+), then the all hosts addresses associated with host are considered to be

available managers.

Directives Clustering Configuration

30 27-July-2021 Configuration

port The TCP port number or service name at which the manager will accept

connections. The port may be specified with an adjacent colon or space

separation.

iname Associates the specified manager with an instance name (i.e. the name

specified using the -n command line option). The iname is only used to

support running multiple managers on the same physical host.

sname Places the specified manager into a group identified by an arbitrary 1- to 63-

character name, typically the site name. By default, the name local is used.

The sname is only used to support disjoint cluster configurations, discussed

later.

conds The conditions that must exist for this directive to apply. Refer to the

description of the if directive on how to specify conds.

Defaults

None; see the Notes for requirements. If you do not specify all or any, then

any is assumed.

Notes

1) You must specify the “manager” directive for each xrootd given a

manager role and for every cmsd given a server or supervisor role.

2) You must specify the “manager peer” directive for every cmsd given a

peer or peer manager role.

3) You must specify “manager proxy” directive for each xrootd given a

proxy or proxy server role.

4) This is a global directive and must be qualified by the “all” prefix.

5) All non-peer manager cmsd’s use the manager directive to establish a

communications channel with each indicated manager.

6) You may specify up to 16 different managers.

7) If the manager host name ends with a plus, then all the IP addresses

associated with host are treated as managers and every non-manager

cmsd and xrootd subscribes to each one. This allows you to easily

construct fault-tolerant configurations using DNS IP address aliases.

8) The host specifies the machine that is running cmsd in a manager role.

9) IP addresses may be specified in IPV4 format (i.e. “a.b.c.d”) or in IPV6

format (i.e. “[x:x:x:x:x:x]”).

Clustering Configuration Directives

Configuration 27-July-2021 31

10) Manager IP addresses are resolved once at start-up time and all specified

managers should be registered in the DNS. The requirement is relaxed in

dynamic DNS configurations (see the dyndns option of the xrd.network

directive). For dynamic DNS configurations (e.g. Kubernetes), resolution

occurs at run-time when needed.

11) Associating a manager with an instance name allows a manager to pick

out its own specification based on the associated instance name. This is

required when multiple managers for the same cluster run on the same

physical host. Alternatively, you could run each manager in a separate

container and assign a unique hostname to each one. Then it is immaterial

whether or not the containers are running on the same physical host.

Example
all.manager beastmanager.slac.stanford.edu 1213

Directives Clustering Configuration

32 27-July-2021 Configuration

2.1.1 Choosing all vs. any for Normal Managers

When more than one manager is present the all and any options control how a

manager is selected. Be aware that this section discusses these options for normal

managers (i.e. not peer managers). The all and any options as they apply to peer

managers are discussed in the next section.

In order to understand the all and any options you should be familiar on how

xrootd and cmsd managers provide robustness. In the figure below we have three

manager xrootd-cmsd pairs. The xrootd accepts file-oriented requests and asks the

cmsd to resolve the files location. The xrootd client provides robustness by simply

selecting at random some working xrootd. This distributes the load across all xrootd

daemons. On the other hand,

each xrootd daemon actually

connects to all possible cmsd

manager daemons and now has

a choice of which working

manager to use. The all and

any options only affect how an

xrootd daemon selects a cmsd.

When all is specified, the cmsd uses a hash of the target file name to determine

which manager is to handle the file lookup request. This effectively distributes the

load across all available managers. If one of the managers fails, it is temporarily

replaced by another working manager until the failed manager becomes operational

and the load can once again be equally distributed. The manager selection algorithm

is effective even when multiple managers fail. Choose the all option if you expect a

heavy file lookup load.

When any is specified, the cmsd designates one of the managers for all file lookup

requests. If that manager fails, the next available working manager is used. When

the failed manager becomes operational it is once again designated as the preferred

manager. This option provides simplicity for debugging file location problems since

only one manager is handling all file lookup requests and only one log usually

needs to be consulted. Use the any option when you expect light loads. Consider

using the all option if you see one of the cmsd using more than about 4% of the CPU

or grow beyond 1 GB of memory.

Clustering Configuration Directives

Configuration 27-July-2021 33

2.1.2 Peer Manager File Location and Selection

The manager directive with the peer option identifies managers of other peered

clusters. It is only used by servers that have a non-proxy manager or meta-manager

role. Peer clusters are destinations of last resort. When a file cannot be found in the

cluster and there is an eligible peer cluster that could potentially serve the file, the

client is redirected to the peer cluster. Peer clusters are never searched for a file by

another peer manager. In effect, they are independent clusters that may or may not

have the file of interest.

A peer cluster can have its own set of peer clusters and generally peer relationships

are reciprocal in nature. That is if manager A has peer B then B would naturally

name A as its peer manager. When a client is redirected to a peer, the redirecting

manager prohibits that peer from redirecting back to it. This avoids a redirection

loop.

Peer selection is controlled by the any and all options. The default is all which

means clients will be redirected to peers in the order they are listed. For instance, if

two peers are listed as in order B and C then a client will always be redirected to B

unless B is not available, in which case it will be redirected to C.

When any is specified on the first manager peer directive, then clients are redirected

to peers in least recently used order. Unlisted peers subscribing to a manager receive

the any option. If all is in effect, these peers are selected last.

Because peer clusters are never searched by a peer manager, locate requests directed

to a peer manager do not, by default, list peers. In certain contexts, this may produce

less than optimal results (e.g. xrdcp extreme copy mode). The kXR_locate

kXR_addpeers option may be used to also display eligible peers. It is important to

remember that these peers might not have the file in question and a manual search is

needed to determine if they do. This automatically happens in recursive location

requests but should be avoided for broad requests (e.g. directory listing) in order to

minimize network traffic.

Displayed peers cannot be readily differentiated from local resources. However, it is

possible to restrict locates to peers by prefixing the path with an equals sign (“=”).

The result indicates which peers need to be searched determine the file’s actual

location.

Clustering Configuration Directives

Configuration 27-July-2021 35

Figure 2.1.3-1: Uniform Cluster

Figure 2.1.3-2: Uniform Cluster

Figure 2.1.3-1: Disjoint Clusters

2.1.3 Disjoint Cluster Configurations

Normally, the manager directive identifies all of

the managers for a particular collection of

servers, called a cluster. When you identify

more than one manager, the members of the

cluster assume that the managers are

functionally identical (i.e. merely replicas setup

for enhanced reliability). The figure on the left

shows such a configuration. Here SM, a server,

joins the two managers, M-A1 and M-A2, of

Cluster A. Then SM becomes part of that

uniform cluster. Thus, a request issued by one of the managers is automatically done

relative to all of the managers. This provides cluster cohesion regardless of how

many managers exist and the all.manager directive is the same for all members of

cluster A.

For instance, if one of the managers of a cluster blacklists and redirects a member of

the cluster, that member assumes that the redirect is to be taken relative to all of the

managers. Hence, the member disconnects from all of the managers and connects to

the nodes to which the member was redirected by one of the managers.

This mode of

operation is correct as

long as all of the

managers are indeed

replicas of each other.

However, it is

possible to construct

a cluster whose

members provide

resources to two

disjoint clusters, say

A and B, as shown in

the figure to the left.

In this case, SM still

needs to identify the managers of A and the managers of B. But in this case, they

really are not replicas of each other. Indeed, managers of A are distinct from the

managers of B. Treating all of them identically would quickly make such a

configuration dysfunctional.

Directives Clustering Configuration

36 27-July-2021 Configuration

SM avoids such a conflict by using the sname qualification in the all.manager

directive when defining the managers in its own configuration file. Here, managers

in cluster A were qualified with @A while managers in cluster B were qualified with

@B. This allows SM to treat these as two as unrelated managers yet provide services

to both managers in a uniform way.

The ‘@’ suffix is an arbitrary name and is merely used to distinguish the managers. If

you employ site naming (i.e. xrd.sitename directive) then the suffix should be the

site name assigned to each cluster. This makes log file messages more descriptive;

especially for such a complex cluster configuration.

Had SM been a manager, then the all.manager directive in its configuration file

would identify the managers of A and B as meta-managers, as

all.manager meta hostname:port@sname

Finally, you can avoid listing each individual manager by manager by creating a

DNS entry that is associated with two address records, one for each manager in the

cluster. Doing this would allow you to simply enter the DNS alias for both managers

indicating that the addresses should be automatically expanded as in

all.manager meta hostname:port+@sname

Clustering Configuration Directives

Configuration 27-July-2021 37

2.2 role

all.role rolename [if conds]

rolename: [meta | proxy] manager | [proxy] server |

 [proxy] supervisor

Function

Designate the role the server is to have.

Parameters

rolename

The server’s role in the configuration. See the usage notes and the following

section for an explanation of roles.

conds The conditions that must exist for this directive to apply. Refer to the

description of the if directive on how to specify conds.

Defaults
all.role manager

Notes

1) This is a global directive and must be qualified by the “all” prefix.

2) Do not specify the all.role directive when configuring a stand-alone

XRootD server. This directive specifies that the server is part of a cluster

and that a local cmsd exists. Stand-alone servers, by definition, do not

have a cmsd. Failure to ignore this will fill the log with error messages

indicating that the local cmsd cannot be contacted.

3) A role of manager indicates that the cmsd is at the top-most level of the

server hierarchy and is used to locate files.

4) A role of server indicates that cmsd is at the bottom-most level of the

server hierarchy and is used by pure data servers to serve data files.

5) A role of supervisor indicates that the cmsd is at an intermediate-level of

the server hierarchy and is used to bridge the top-most level and the

bottom-most level.

Directives Clustering Configuration

38 27-July-2021 Configuration

6) A role of meta manager indicates that cmsd is to act as a manager and

accept subscriptions from other managers. Meta managers allow you to

federate administratively independent clusters.

7) A role of proxy indicates that the xrootd is at the top- and bottom-most

level of the server hierarchy. When contacted, the xrootd acts like a

manager to locate the target file. However, unlike a true redirector, the

xrootd actually performs the requested operation as if it were a server

acting in behalf of the client making the request.

8) Any xrootd’s designated as proxies may only communicate with cmsd’s

that have also been designated as proxies.

9) The following table describes the effect each role has on an xrootd server

and its corresponding cmsd server.

Example
all.role supervisor if sup*.slac.stanford.edu

2.2.1 Role Summary Table

Role cmsd xrootd

manager Provides a search service

across one or more “server”

or “supervisor” cmsd’s.

Logs into one or more

cmsd’s, identified by the

“manager” directive, and

provides a redirection

service

server Subscribes to a “manager”

cmsd, identified by the

“manager” directive, in

order to form a cluster and

accepts logins from a local

xrootd.

Logs into a local “server”

cmsd and provides data

from a locally accessible file

system.

supervisor Same as “server” plus

provides a search service

across one or more server

or supervisor cmsd’s.

Logs into a local

“supervisor” cmsd and

provides a redirection

service.

meta manager Provides a search service

across one or more

“manager” cmsd’s.

Logs into one or more meta

manager cmsd’s, identified

by the “manager meta”

directive, and provides a

redirection service

Clustering Configuration Directives

Configuration 27-July-2021 39

Role cmsd xrootd

proxy manager Same as “manager” but

only accepts cmsd’s and

xrootd’s that have a

“proxy” role (i.e., can only

manage proxies).

Same as manager role except

that the manager cmsd’s

must also have a proxy role.

proxy server Same as “server” except that

managers and the local

xrootd must also have a

proxy role.

Same as “proxy” and logs

into a local “proxy server”

cmsd to be part of a cluster.

proxy supervisor Same as “supervisor” but

only allows proxy cmsd

subscriptions (i.e., can only

manage proxies).

Logs into a local “proxy

supervisor” cmsd and

provides a redirection

service.

Clustering Configuration Directives

Configuration 27-July-2021 41

3 Common Configuration Directives

3.1 allow

cms.allow { host | netgroup } name

Function

Restrict the hosts that can subscribe to the manager cmsd.

Parameters

host name

The DNS host name or IP address allowed to subscribe to the cmsd.

Substitute for name a host name or address. The host name may contain a

single asterisk anywhere in the name. This lets you allow a range of hosts

should the names follow a regular pattern. IP addresses may be specified in

IPV4 format (i.e. “a.b.c.d”) or in IPV6 format (i.e. “[x:x:x:x:x:x]”).

netgroup name

The NIS netgroup allowed to subscribe to the cmsd. Substitute for name a

valid NIS netgroup. Only hosts that are members of the specified netgroup

are allowed to subscribe to the cmsd.

Defaults

 None. If allow is not specified, any host is allowed to subscribe.

Notes

1) This directive is only used by manager-mode cmsd’s.

2) You may specify any number of hosts and netgroups. Any host matching

a specified name or is a member of a specified netgroup is allowed to

subscribe to the cmsd.

3) Warning! Using hostname based security relies on the security of the DNS

server and the inability of other hosts spoofing and successfully using the

“allowed” IP addresses. The two security assumptions have severe

limitations.

4) Use strong authentication to provide a more robust security framework.

Refer to the seclib directive for more information.

Directives Clustering Configuration

42 27-July-2021 Configuration

Example
 cms.allow host kandata*.slac.stanford.edu

Clustering Configuration Directives

Configuration 27-July-2021 43

3.2 defaults (an oss directive)

oss.defaults options

options: [no]check [no]compchk [no]dread

 {forcero | readonly | r/o | r/w | [not]writable}

 {inplace | outplace} {local | global | globalro}

 {[no]mig | [not]migratable} [no]mkeep [no]mlock

 [no]mmap [no]rcreate [no]ssdec [no]stage

Function

Specify default file processing options.

Parameters2

Option Disabled/Enabled Function Default

forcero Convert all file open requests to read-

only access (cmsd & oss).

writable

local Do not export this path via the cluster

manager (cmsd only).

global

global Export this path via the cluster

manager (cmsd only)

global

globalro Export this path via the cluster

manager as read-only (cmsd only).

global

readonly

r/o

Files may only be opened for read

access (cmsd & oss).

writable

r/w Path is writable (cmsd & oss) writable

[no]stage [Do not] stage a file from a remote

storage system should it not exist in

the local file system at open time.

nostage

[not]writable Path is [not] writable (cmsd & oss). writable

2 Only cmsd-related options are shown in the table. Other options are specific or xrootd or the oss

component. Consult xrootd and ofs/oss references for details on unlisted options.

Directives Clustering Configuration

44 27-July-2021 Configuration

Notes

1) This directive is identical to the oss.defaults directive and establishes the

defaults for the export directive. This allows you to keep a single

configuration file for cms and oss components.

2) Directive options may be applied to selected paths using the export

directive. This allows you to selectively over-ride the default,

3) The defaults directive should be specified prior to any export directives.

Notes on forcero and readonly

1) The forcero and readonly options declare any files prefixed by the path to

be non-writable. The cmsd excludes all servers declaring the prefix as

non-writable when looking for a file that is to be modified or created.

2) The mlock, mkeep, and mmap options cause a path to have the forcero

attribute.

Notes on local, global, and globalro

1) The local option prevents the applicable paths to be seen by the manager

cmsd; making them globally inaccessible via the redirector.

2) The global option makes a path eligible to be used by the manager cmsd

and associated redirector. This is the default.

3) The globalro option makes a path eligible to be used by the manager

cmsd and associated redirector in readonly mode; regardless of how it is

actually declared for the server. This allows you to export local writable

paths as global readonly paths.

Notes on [no]stage

1) When stage is in effect, files are dynamically staged from a remote storage

system to local file space when opened, if the file is not already locally on

disk. The cmsd selects servers that can stage the file should no other

server have the file or if otherwise eligible servers are overloaded or

unavailable.

2) When nostage is in effect, the server claims that the files must exist on

disk in order to be accessed.

3) The nostage and stage directives may be applied to selected paths using

the path directive.

Example
 oss.defaults stage forcero

Clustering Configuration Directives

Configuration 27-July-2021 45

3.3 dfs

cms.dfs [limit [central] [=]rate]

 [lookup {central | distrib}] [mdhold mdtm]

 [qmax qmax] [redirect {immed | verify}]

 [retries rmax]

Function

Configure distributed file system handling.

Parameters

limit Establish limits on meta-manager requests. The limit is applied in the

manager node when central is specified. Otherwise, the limit is applied

where file systems look-ups occur (see lookup). The rate specifies the number

of look-ups per second allowed. When rate is preceded by an equals sign (=),

look-ups are metered to occur exactly at the specified rate. Otherwise, the

system uses a median-average algorithm. See the notes on how these

algorithms differ. By default, no limit is applied and is equivalent to

specifying zero or a value greater than 1000 for rate.

lookup

 Specifies where file existence checks are to be performed. By default, they are

performed on data server nodes (i.e. distrib). If the manager node has access

to the distributed file system, file existence can be checked by the manager if

central is specified. See the notes on the pros and cons of using central vs.

distrib look-ups.

mdhold

 Instructs data servers to keep track of missing directories for mdtm time. The

mdtm may be suffixed by s (the default), m , or h to indicate seconds, minutes,

and hours, respectively. When a look-up for a non-existent file occurs, the

data server automatically looks-up its parent directory and records whether

or not it exists. If the directory does not exist, the fact is remembered for

mdtm. Otherwise, the fact that the directory exists is remembered for

mdtm*10. Subsequent look-ups for files in missing directories will

Directives Clustering Configuration

46 27-July-2021 Configuration

immediately fail. See the notes on appropriate values. The default is zero

which turns this optimization off.

qmax Specifies the maximum number of look-ups that can be queued for

processing. When qmax is reached, the oldest unprocessed look-ups are

deleted and no look-up is performed; effectively returning a “file does not

exist” response. The qmax is ignored if no rate limit applies. The minimum

value is 1. The default value is rate*2.5. See the notes on how this interacts

with rate.

redirect

 Specifies how the manager is to handle file look-ups by clients. When immed

is specified, no look-up is performed and the client is immediately directed to

the most suitable data server where the client re-drives the look-up. This is

the default for proxy managers. When verify is specified, the manager first

determines whether or not the file exists (either locally or via a server query,

as specified by lookup) and if the file exists, the client is directed to a suitable

server. This is the default for non-proxy managers. See the usage notes on

how this option affects performance.

retries

 Specifies how many servers a client may exclude when reselecting a server in

the DFS cluster due to an error. The default is 2.

Defaults

Proxy manager:
cms.dfs limit 0 lookup distrib mdhold 0 redirect immed retries 2

Otherwise:
cms.dfs limit 0 lookup distrib mdhold 0 redirect verify retries 2

Notes

1) When you specify the dfs directive, the cmsd optimizes file processing to

avoid duplicate requests for the file. A distributed file system is essentially

a shared-everything system and if one data server has access to a file, all

data servers have access to the same file. Examples of distributed file

systems are: dCache, GPFS, HDFS, Lustre; and xrootd proxy servers.

2) By default, the cmsd assumes a shared-nothing system where each data

server has its own independent file system. In order to determine who has

a file, all data servers are necessarily interrogated.

Clustering Configuration Directives

Configuration 27-July-2021 47

3) As in shared-nothing systems, the cmsd still honors the exported paths

declared by servers in a shared-everything system. So, while each server

has access to all files in the file system you may logically restrict access by

exporting different paths from each server.

4) The limit parameter only applies to meta-manager requests and provides

you with the option of limiting the impact of external queries. If the limit

is set too low or is set much higher than the ability of the underlying file

system to handle look-ups (i.e., stat()), files will appear to be non-existent

to the meta-manager at the queried node.

5) When limit is specified, the default is to use a median-average algorithm

to limit look-ups. This algorithm allows for brief bursts of activity before

applying deterministic pacing. This kind of algorithm is much more

responsive and requires less CPU time. However, it can subject the

underlying file system with up to 50% of the allowed look-ups in a very

brief period of time. The alternative is to pace the look-ups at a

deterministic rate. While this is not as responsive and requires more CPU

time, it guarantees a predictable file system load.

6) The limit rate is directly affected by the lookup parameter. When look-ups

are done by managers (i.e., lookup central) the actual rate is equal to the

specified value times the number of managers configured to talk to a

meta-manager. When look-ups are done by data servers (i.e., lookup

distrib, the default) the actual rate is equal to the specified value times the

number of data servers whose manager talks to a meta-manager. In either

case, the number of meta-managers does not affect the rate.

7) In general, it is rare that a limit needs to be specified and is normally not

recommended.

8) The lookup parameter controls where file look-ups occur. The default is to

spread look-ups across all of the data servers. This greatly increases

scalability at the cost of increased latency. If the look-up request rate is

relatively low or the underlying file system can process a look -up in less

than a few milliseconds, then specifying central can reduce the latency

while maintaining reasonable scalability. The underlying distributed file

system must be available to the manager when central look-ups are

enabled. The choice of look-up impacts the specified limit, if any.

Directives Clustering Configuration

48 27-July-2021 Configuration

9) The mdhold parameter allows you to reduce the overhead when looking

up missing files when look-ups are done for files in a missing directory.

The mdhold parameter control how long the cmsd is to remember that a

directory is missing. Future look-ups in a missing directory immediately

fail without actually checking the underlying file system during this time.

Since the cmsd has no way of knowing if a directory was actually created

during this time, the hold time should be set to a small value and should

not be specified at all if directories are actively created for files likely to be

looked up either by the meta-manager or the manager. Excessively long

hold values will likely result in files being incorrectly tagged as missing.

10) The mdhold processing occurs where look-ups are preformed (see the

lookup parameter). The limit parameter does not apply to directory look-

up requests.

11) The mdhold option is not compatible with http[s] and may cause http to

report an error when creating a directory.

12) The qmax parameter controls the maximum number of outstanding look-

up requests. It is only meaningful when a limit is in effect. Look-up

queues may occur when the limit is set too low or when the actual file

system look-up rate is lower than the specified limit. When the queue

limit is reached, the oldest requests are discarded and the file is deemed

missing for those look-up requests.

13) The redirect parameter can also be used to optimize look-ups. In immed

mode (the default for proxy managers), the manager immediately

redirects clients to a suitable data server without any file look-up at all.

The server is responsible for doing the look-up. In verify mode (the

default for non-proxy managers), the manager performs the look-up to

ensure that a selected data server will in fac t be able to process the client’s

request. The choice of mode should be done in the context of how clients

reach a manager node. If most of the activity is local to the cluster then

verify mode is usually better. If most of the activity is generated by meta-

manager redirects then immed mode is usually better.

14) The retries option provides a limit on how many times a client may

reselect a server. The notion is that since all servers in a DFS cluster are

the same, an error encountered on one would also occur on any other DFS

server. The default allows for two tries before the error is considered

permanent. This avoids needlessly redirecting clients to other servers.

15) Do not confuse the retries option with the option maxretries option in the

sched directive. The sched maxretries applies a similar limit only to

regular clusters.

Clustering Configuration Directives

Configuration 27-July-2021 49

16) The dfs directive is meant to be used for clusters exporting a distributed

file system or for proxy non-caching clusters. Other uses are not supported

and may produce unwanted effects.

Example
 cms.dfs lookup central mdhold 1m

Clustering Configuration Directives

Configuration 27-July-2021 51

3.4 export

all.export path [xoptions] [options]

Function

Specify processing options for any path matching the specified path prefix.

Parameters

path The path prefix to which the specified options apply. If no options are

specified, the current defaults are used.

xoptions

xrootd options to apply to any path whose prefix matches path. See the export

directive described in the xrd/xrootd configuration reference.

options

oss and cmsd-specific (i.e., local, global, and globalro) options to apply to

any path whose prefix matches path. Refer to the oss.defaults directive for a

detailed explanation of these options.

Defaults

All paths are processed according to the default options in effect at the time

the path directive is encountered. Defaults are set using the defaults

directive.

Notes

1) Any number of export directives may be specified. They are cumulative

and are checked in decreasing length order (i.e., most-specific to least

specific).

2) The export directive is usually defined when configuring xrootd and the

oss component. Additional cmsd-specific options may also be included.

3) The export directive is used by xrootd and cmsd to determine which paths

are valid for incoming client requests.

4) The export directive is used by oss component to enforce desired

processing attributes.

Directives Clustering Configuration

52 27-July-2021 Configuration

Example
 all.export /xrd/files/staged mig nodread rcreate

Clustering Configuration Directives

Configuration 27-July-2021 53

3.5 localroot (an oss directive)

oss.localroot path

Function

Specifies where the local file system name space is actually rooted.

Parameters

path The path to be pre-pended to any local path specified by a client request.

Defaults

None. Paths are used locally as specified.

Notes

1) The localroot parameter allows you to keep the external namespace

consistent even when you move the associated file system from one

location to another. Say that a file system is mounted at /xrd. This means

that all file paths start with./xrd. If now you needed to mount the file

system at /usr/xrd then by specifying
oss.localroot /usr

the external view of the file system would remain the same since oss will

automatically prefix all paths with /usr and use the new mount point.

2) The cmsd honors the oss localroot directive. This allows you to use a

single configuration file for the cms and oss components.

Example
 oss.localroot /usr

Directives Clustering Configuration

54 27-July-2021 Configuration

3.6 perf

cms.perf [xrootd] args

args: [int time] [lib path [parms] | pgm prog]

Function

Specify how load is computed and reported.

Parameters

xrootd

The directive only applies to the cms client running in an xrootd server. This

option allows reporting load from the xrootd server as opposed to the cmsd.

int time

When pgm is specified; the estimated time between load reports as computed

by prog. When lib is specified, the rate at which performance information is to

be retrieved from the plug-in. The time may be suffixed by s (the default), m ,

or h to indicate seconds, minutes, and hours, respectively.

lib path [parms]

The load is computed by a plug-in residing in the shared library identified by

path. The plug-in reports it when asked or pushes the information to the

server. The parms, if any, are passed to the plug-in when it is loaded. The lib

parameter must be the last parameter on the line.

pgm prog

The program that computes the machine load and write the information to

standard out. The pgm and xrootd parameters are mutually exclusive. The

pgm parameter must be the last parameter on the line.

Defaults
cms.perf int 3m

Clustering Configuration Directives

Configuration 27-July-2021 55

Notes

1) This directive is only used in servers with a role of server.

2) There is no default value for the program or library and load information

cannot be collected and reported unless a load collector exists. A sample

program, cms_MonPerf, is supplied for this purpose. This program uses

the rperf command, among others, to calculate the cpu, i/o, and various

other load levels.

3) The specified program is started by the server-mode cmsd at startup time.

It is automatically restarted after two failures to report a load within the

specified interval.

4) The xrootd argument is meant for custom installations where the load is

better computed in the data server than an external source. If you decide

to use this option you should not include a directive that does not contain

the xrootd option.

5) The specified program must write 5 white-space separated numbers to

standard out. The last number must be terminated by a new-line character

(“\n”). Each number must be normalized to 100, with 0 indicating no load

and 100 indicating saturation. The numbers are in the order:

1. system load

2. cpu utilization

3. memory utilization

4. paging load, and

5. network utilization.

6) Performance can also be supplied by a plug-in. Refer to the “include” file

XrdCmsPerfMon.hh for details.

Example
cms.perf int 5m pgm /usr/etc/ooss/olb_MonPerf 300

Clustering Configuration Directives

Configuration 27-July-2021 57

3.7 prep

cms.prep [echo] [reset cnt] [scrub time] [ifpgm ifprog]

Function

Specify how offline file preparation is done.

Parameters

echo Writes to the log all of the files found in the external in-preparation queue

whenever a reset occurs.

reset cnt

The maximum number of scrubs of the in-preparation queue that can be done

before the contents of the queue are recomputed. The default is three (3).

scrub time

The time between scrubs of the in-preparation queue. The time may be

suffixed by s (the default), m , or h to indicate seconds, minutes, and hours,

respectively. The default is 20 minutes.

ifpgm ifprog

If specified, ifprog replaces the default built-in prepare mechanism and

becomes the interface that adds, removes, and lists preparation queue files.

The following section describes the input, output, and calling conventions

that ifprog must have. The ifpgm parameter must be the last parameter on the

line. Any parameters after ifprog are passed to the program via the argument

list. Quoted values must be avoided as they are not correctly passed.

Defaults

None. Preparation queue handling is normally disabled.

Notes

1) This directive is only used by server- and manager-mode cmsd’s.

2) The default prepare mechanism relies on the File Residency Manager’s

frm_xfragent. You must configure and run frm_xfrd to successfully

implement the default prepare mechanism.

Directives Clustering Configuration

58 27-July-2021 Configuration

3) Each cmsd that can stage files is also capable of preparing files to be

online prior to their active use. This is done through the prepare protocol.

The mechanism that is actually used to bring files to local disk is the

responsibility of the external infrastructure.

4) The prep directive enables and, optionally, describes the interface to that

infrastructure. If you do not specify the prep directive, even with no

arguments, file preparation is disabled.

Example
cms.prep scrub 10m ifpgm /opt/xrd/bin/prep_mngr

Clustering Configuration Directives

Configuration 27-July-2021 59

3.7.1 Optional Prepare Interface Program Requirements

Most installation chose the default mechanism to route file preparation requests.

This employs the File Residency Manager along with frm_afragent and frm_xfrd.

Refer to the File Residency Manager Reference for full details. If you have special

needs, you can over-ride the built-in default by specifying an ifprog (see previous

section). The requirements of this program are:

1) The ifprog is used to add, remove, and list reparation queue files. When

specified, it is started at initialization time and is expected to run continuously,

and is automatically restarted should it fail. Parameters are sent via standard

in, one request for each new line terminated record. Except for the “list” (i.e., ?)

request, the program should not write any output to standard out. Output to

standard error is included in the cmsd log file.

2) When the cmsd needs to know the exact contents of the preparation queue

(e.g., files waiting to be brought to local disk) it sends a single question. Refer to

the default prepare query message for the exact response requirements.

3) The format of the messages sent to the program is described under the

prepmsg directive. To the prepare query message description for the required

response.

4) If prepare notification is requested, the command should adhere to the

following message format:

 Successful: ready requestid msg path

 Unsuccessful: unprep requested msg path

requestid is the request identifier associated with the completed request.

msg is the text that followed the notification url (see the prepmsg directive).

This text must be sent without inspection.

path is the logical name of the file that successfully prepared or whose

preparation failed.

5) Because file preparation is done on a best-effort philosophy, the preparation

program is free to honor (or not) the requests in any way. Currently, the cmsd

does not check the return status of the program nor expects any error output

(e.g., messages).

Directives Clustering Configuration

60 27-July-2021 Configuration

3.7.1.1 Default Prepare Request Message (prepmsg)

The default3 message that is sent to the prep ifpgm’s stdin when a prepare operation

is required has the following format:

+[traceid] requestid npath prty mode path [path [. . .]]

Where:

traceid The unauthenticated identifier associated with the client making the

request. The traceid is automatically included when communicating with

the File Residency Manager (frm).

requestid The request identifier that can be used to group this request into a unique

set of requests. The requestid is globally unique.

npath The notification path to be used to indicate how the request complete. This

field may contain:

- no notification is to be sent.

file:////path send msg via local named pipe named path

mailto://user send e-mail to user

tcp://rhost:port/msg send msg via tcp to rhost:port

udp://rhost:port/msg send msg via udp to rhost:port

prty The request priority: 0, the lowest, to 2, the highest.

mode The processing mode and may contain a combination of the following

letters:

 f send fail notice (not affected by q flag)

 n send success notice

 q suppress default failure notice (i.e., quiet)

 r file is expected to be only read

 w allow the file to be modified

path The absolute logical name of the file to be prepared. If more than one path

is specified, each path is separated by a blank.

3 This message may be specified by using the stagemsg directive.

mailto:user

Clustering Configuration Directives

Configuration 27-July-2021 61

Notes

1) You can change the format of a prepare request message with the prepmsg

directive. However, you cannot use the supplied frm_pstga and mps_prep4

commands unless you use the default format.

3.7.1.2 The Prepare Cancel Message

The following message is sent to the prep ifpgm’s stdin to cancel a stage operation:

- requestid

Where:

requestid The request identifier used in a previous prepare request. All entries with

this requestid should be removed.

Notes

1) You cannot change the format of a prepare cancel request message.

3.7.1.3 The Prepare Query Message

The following message is sent to the prep ifpgm’s stdin to cancel a stage operation:

?

Notes

1) The ifprog should respond with a list of new-line separated absolute paths

associated with queued requests.

2) You cannot change the format of a prepare query request message.

4 mps_prep along with mps_PreStage and mps_Stage are deprecated. The frm_xfrd should be used

instead.

Clustering Configuration Directives

Configuration 27-July-2021 63

3.8 sched

cms.sched parms

parms: [affinity [default] {none|weak|strong|strict}]

 [affpath {all | first n | last n}]

 [cpu pcpu] [io pio] [mem pmem] [pag ppag]

 [runq prunq] [space putl] [fuzz fnum]

 [gsdflt gsdp] [gshr gsp] [maxload mload]

 [maxretries mrt[@host:port]]

 [nomultisrc[@host:port]] [refreset sec]

Function

Specify the parameters for the load balancing scheduling algorithm.

Parameters

affinity [default] {none|weak|strong|strict}

File affinity policy that the redirector should use when selecting a server.

default the specified affinity is merely a default and a client may select

an alternate affinity using the “cms.aff” CGI tag (see the notes

for details). Without default the specified affinity is mandatory.

none files have no affinity and servers should be selected to distribute

requests across all servers. This is the default and uses load

information if it has been configured.

weak files have affinity to the longest-lived server however when the

location of the file is not known, the client is directed to the first

server that declares it has the file. Otherwise, the longest lived

server that has the file is always used. Load information is used

if it has been configured.

strong files have affinity to the longest-lived server and when the

location of the file is not known, the client is delayed until all

locations of the file are known. Only then is the client redirected

Directives Clustering Configuration

64 27-July-2021 Configuration

longest lived server that has the file is always used. Load

information is used if it has been configured.

strict same as strong but load information is never used even when it

is available. This guarantees that the longest-lived server is

always chosen regardless of its load.

affpath {all|first n|last n}

File affinity path policy that the redirector should use when selecting a server.

Affinity is determined by the file path or some portion of it, as follows:

all the full path, this is the default.

first the first n components of the path.

last the last n components of the path.

cpu tcpu

The percentage of cpu load to be used to compute the overall load of a server.

fuzz fnum

The percentage difference two overall load values must have before they are

considered different. A value of 100 suppresses the use of load in any

scheduling decisions.

gsdflt gsdp

The default share the meta-manager should use in the absence of a manager-

specific value. The default is 100. See the notes for more information.

gshr gsp

The maximum percentage of meta-manager requests that should be directed

to this manager (i.e. the global share). The default is 100. See the notes for

more information.

io pio The percentage of io load to be used to compute the overall load of a server.

maxload mload

The maximum overall load a server may have. Servers whose overall load is

greater than mload are not scheduled.

Clustering Configuration Directives

Configuration 27-July-2021 65

maxretries mrt

The maximum number of times a client can request an alternate server due to

errors or to increase bandwidth to a file. By default, there is no limit. When

mrt is suffixes by @host:port then the client is redirected to the specified host

and port once the limit is exceeded. Specify a value between 0 and MAXINT.

This option is meant to be used for disk caching proxy servers. See the notes

for more details.

mem tmem

The percentage of memory load to be used to compute the overall load of a

server.

nomultisrc

When specified, it disallows the client to request an alternate server to

increase bandwidth to a file. By default, the client is allowed to do so. When

the options is suffixes by @host:port then the client is redirected to the

specified host and port is any attempt is made to get an alternate server on

order to increase network bandwidth. This option is meant to be used for disk

caching proxy servers. See the notes for more details.

pag tpag

The percentage of paging load to be used to compute the overall load of a

server.

refreset sec

The number of seconds between server reference count resets. The time may

be suffixed by s (the default), m , or h to indicate seconds, minutes, and

hours, respectively.

runq trunq

The percentage of runq load to be used to compute the overall load of a

server.

space putil

The percentage of space utilization to be used to compute the overall load of a

server when selecting a server to stage or create a file.

Directives Clustering Configuration

66 27-July-2021 Configuration

Defaults
cms.sched affinity none affpath full

cms.sched cpu 0 io 0 mem 0 pag 0 runq 0 space 0 fuzz 20

cms.sched gshr 100 refreset 3600

Notes

1) This directive is only used by cmsd’s with manager and supervisor roles.

2) The load-balancing algorithm chooses from all available servers the server

whose computed overall load is smallest. When two servers have the

same load, as determined by fuzz, the affinity option controls the

selection (e.g. affinity none chooses the least selected server).

3) Other factors apply in selecting a server. For instance, whether or not the

server has the requested file on disk, whether the server is allowed to

dynamically stage a file, whether the server has sufficient disk space, etc.

4) The sum of pctcpu, pctoi, pctmem, pctpag, and pctrunq should be equal to

100.

5) If the sum of pctcpu, pctoi, pctmem, pctpag, and pctrunq is equal to zero, or

if fuzz is 100, severs are selection is determined by the affinity option (e.g.

affinity none performs round-robin selection).

6) Mode scheduling is also forced when performance monitoring is disabled

(see the ping usage directive).

7) Round-robin selection, with or without load information, is accomplished

by using an internal reference counter in order to equalize the selection

process. Since this counter may drift due to external anomalies

encountered during scheduling, it is periodically reset. The refreset

parameter controls the minimal reset frequency. However, the counter is

only reset if sufficient selection activity occurred.

8) The gshr option allows you to set the maximum relative share of requests

that a meta-manager subscriber wishes to accept from a meta-manager.

Since the percentage is relative its effect is determined by the relative

shares of other subscribers to the meta-manager. For instance, if all

subscribers indicate the same share then this is equivalent to a share of 100

from the perspective of any individual subscriber. Hence, for global shares

to be useful requires some amount of co-ordination between participating

subscribers.

9) The global share is used by the meta-manager to select a subscriber only

when a choice of subscribers exists (i.e., more than one subscriber has a

requested file). In such a case, the meta-manager selects a subscriber so as

not to exceed any individual subscriber’s relative share of requests.

Clustering Configuration Directives

Configuration 27-July-2021 67

10) A subscriber’s share may be temporarily reduced if the subscriber is

repeatedly selected because it is the only one which has a requested file.

11) The gsdflt option allows you to specify a default share (e.g. 50). This

allows you to treat most subscribers the same and only differentiate those

that are exceptions by giving them higher or lower shares than the normal

default share.

12) The gshr and gsdflt options only apply to interactions with a meta-

manager.

13) When the default is specified in the affinity option, then a client may

choose a different affinity using the cms.aff CGI tag as follows:

Tag Corresponding affinity Tag Corresponding affinity

cms.aff=n none cms.aff=s strong
cms.aff=w weak cms.aff=S strict

Directives Clustering Configuration

68 27-July-2021 Configuration

14) The maxretries and nomultisrc options are mean to be used for disk

caching proxy server clusters to control the number of copies that may be

created in the overall cluster. Using it for other purposes is not supported

and may produce unwanted effects.

15) Do not confuse the maxretries option with the similar retries option in the

dfs directive. They are orthogonal. While the effects are similar, the sched

maxretries option is only applied to regular clusters while the dfs retries

option is applied to dfs type clusters.

Example
cms.sched cpu 50 io 50

Clustering Configuration Directives

Configuration 27-July-2021 69

3.9 seclib

cms.seclib path
or

all.seclib path

Function

Specify the location of the security interface layer.

Parameters

path The absolute path to the shared library that contains an implementation of the

Security (sec) interface that cmsd is to use for strong authentication.

Defaults

Strong authentication is disabled unless seclib is specified.

Notes

1) The sec interface allows you to provide an arbitrary authentication

implementation (e.g., Kerberos, GSI, etc).

2) A sec implementation requires that compatible interface libraries be used

on the server and client sides of the connection.

3) Refer to XrdSecEntity.hh and XrdSecInterface.hh for guideline on how to

write a sec interface.

4) If you are using a common configuration file for all components (e.g.,

xrootd and cmsd) with security enabled; consider the following points.

a. If the same security library is used for xrootd and cmsd, specify

all.seclib to avoid having to specify the seclib directive twice.

b. If a different set of protocols is being used for xrootd vs. cmsd, bracket

the differences with an “if exec” construct. For instance,

if exec cmsd

security directives for cmsd

else

security directives for xrootd

fi

Example
 cms.seclib /opt/xrootd/lib/libXrdSec.so

Directives Clustering Configuration

70 27-July-2021 Configuration

3.10 space

cms.space [linger num] [recalc sec]

 [[min] [min%] min[k|m|g|t] [[hwm%] hwm[k|m|g|t]]]

Function

Specify how servers are selected for file creation.

Parameters

linger num

The number of times a server may be reselected without an intervening

server being selected for allocation. The default is zero (0).

recalc sec

The number of seconds between free space recalculations. The time may be

suffixed by s (the default), m , or h to indicate seconds, minutes, and hours,

respectively.

min% The minimum amount of free space, as a percentage of the largest partition, a

server must have in order for it to be selected. If the percentage is less than

the min byte value, the min value is used.

min The minimum amount of free space a server must have in order for it to be

selected. You may suffix the byte quantity by k, m, g, or t to indicate kilobyte,

megabytes, gigabytes, or terabytes, respectively.

hwm% The minimum amount of free space, as a percentage of the largest partition, a

server must have in order for it to be selected after free space has fallen below

min. If the percentage is less than the hwm byte value, the hwm value is used.

hwm The minimum amount of free space a server must have in order for it to be

selected after free space has fallen below min. You may suffix the byte

quantity by k, m, g, or t to indicate kilobyte, megabytes, gigabytes, or

terabytes, respectively.

Clustering Configuration Directives

Configuration 27-July-2021 71

Defaults
cms.space linger 0 recalc 15 min 2% 10g 5% 11g

Notes

1) This directive is only used by manager-and server mode cmsd’s.

2) The space values are used during server selection when either a file is

opened in create mode or when a file must be dynamically staged.

Example
 cms.space min 2g 10g

Directives Clustering Configuration

72 27-July-2021 Configuration

3.11 space (an oss directive)

oss.space group { path | ppfx* }

Function

Specify the location of one or more disk partitions.

Parameters

group The arbitrary name for the disk partition. Specify a 1- to 63-character name.

While the name is required, the cmsd does not use it for any purpose.

path The absolute path at which the disk partition is mounted.

ppfx* All directory entries that start with ppfx in the containing directory are to be

used as disk partitions.

Defaults

None.

Notes

1) This directive is identical to the oss.space and, now deprecated, oss.cache

directives. This allows you to keep a single configuration file for cms and

oss components.

2) In order to redirect staging operations and file creations, the manager

cmsd must know how much space is available on each server.

3) If the xrootd server is running a partitioned file system (i.e., files are

allocated via symbolic links to one of many possible file system partitions)

then specify each file system partition.

4) The path may end in an asterisk, indicating that all entries in the parent

directory that start with the specified prefix are to be used as a file system

partition. This is useful when partition mount points have regular names

(e.g., /data/space01, /data/space02, etc.).

5) If the cmsd does not find any space directives, it infers the file systems to

be used using the export directive.

Example
 oss.space public /xrootd/space01

Clustering Configuration Directives

Configuration 27-July-2021 73

4 Esoteric Configuration Directives

This section describes directives that are normally not specified. You may wish to

review these directives to be familiar with additional configuration options that are

available.

4.1 altds

cms.altds xroot port [[no]monitor]

Function

Specify an alternate data server to pair with a cmsd server.

Parameters

port Is the port number used by the alternate data server to service data requests

using xroot protocol. The alternate data server must reside on the same node

as the cmsd.

[no]monitor

 The option specifies whether or not the cmsd server should monitor the

availability of the alternate data server. The default is monitor.

Specifying nomonitor makes the cmsd assume that the alternate data server

is always available.

Defaults

None. The cmsd server assumes it is paired with a standard xrootd server.

Notes

1) The altds directive allows you to pair a cmsd configured for a server role

with a non-standard data server using xroot protocol to supply data on

the node where the cmsd is running. Client requests for data available on

the node are automatically redirected to the alternate data server.

2) When monitor is in effect, the cmsd considers the alternate data server

available as long as it is able to maintain an unauthenticated login session

with the alternate data server.

Example
 cms.altds xroot 2094

Directives Clustering Configuration

74 27-July-2021 Configuration

4.2 blacklist

cms.blacklist [check sec] [path]

Function

Black list one or more nodes.

Parameters

sec is the amount of time between checks whether or not the blacklist file has

been changed. When a change is detected, the file is reprocessed and the

blacklist updated. The time may be suffixed by s (the default), m , or h to

indicate seconds, minutes, and hours, respectively. The default is 10 minutes

(i.e. 10m) and may not be less than one minute.

path is the absolute path of the blacklist file. The default is name of the blacklist file

is “cms.blacklist” which is assumed to exist in the configuration file

directory.

Defaults
 cms.blacklist check 10m configdirpath/cms.blacklist

Notes

1) Blacklisting is not applied unless the cms.blacklist directive is specified.

You need not specify any options if the defaults are acceptable.

2) If the configuration file contains a cms.blacklist directive as well as a

cms.whitelist directive, the last such directive applies.

3) Refer to the following major section on how to code a blacklist file.

4) The cms.blacklist directive only applies to nodes with a manager or meta-

manager role.

5) Blacklisted nodes are prohibited from logging in. When a node’s login

fails because it is blacklisted and is not redirected, the login is retried

every minute until it succeeds or fails for another reason.

6) Black-listed may be redirected to another cluster. If this occurs, then no

login retries are attempted at the redirecting host.

7) Redirection is only supported for CMS clients at version 4.2 or above.

Clients below this version are effectively blacklisted and not redirected.

Clustering Configuration Directives

Configuration 27-July-2021 75

8) Nodes that are already logged in and found to be blacklisted and not

redirected are disconnected and prohibited from logging in.

9) Nodes that are already logged in and found to be blacklisted and

redirected are asked to disconnect and retry the login; which causes a

redirect. If the node does not disconnect within the ping interval, it is

forcibly disconnected.

10) To remove all hosts from the blacklist, simply remove the file.

11) If the blacklist file is not present, no controls are applied (i.e. all

connections are allowed to login).

12) If the blacklist file is present but contains a syntax error or cannot be read,

the current black is not changed.

Example
 cms.blacklist /var/run/cms.blacklist

Directives Clustering Configuration

76 27-July-2021 Configuration

4.3 cidtag

cms.cidtag tag

Function

Specify the tag for the internally generated cluster identifier.

Parameters

tag a 1- to 16-character token. The token is added to the cluster identification

string.

Defaults

None.

Notes

1) The altds directive allows you to further constrain the cluster

identification string for uniqueness. In most instances, the cmsd generates

a globally unique cluster identification string. However, depending on the

configuration that may not be possible (e.g. two separate clusters using

the same meta-manager as their manager). The cittag directive allows you

to further differentiate the cluster identification to make sure it is unique

across your clusters.

Example
 cms.cidtag dpm01

Clustering Configuration Directives

Configuration 27-July-2021 77

4.4 conwait

cms.conwait sec

Function

Set the number of second to delay an xrootd client in the absence of a

manager cmsd.

Parameters

sec The number of seconds that a client is delayed when there is no connection to

a manager cmsd. The time may be suffixed by s (the default), m , or h to

indicate seconds, minutes, and hours, respectively.

Defaults
cms.conwait 10

Notes

1) When a client attempts to locate a file and no connection exists to a

manager cmsd process, xrootd defers the client for conwait seconds. After

the time period expires, the client automatically retries the request.

2) The time period chosen for conwait should be sufficiently long to

establish a connection to a cmsd.

Example
 cms.conwait 6

Clustering Configuration Directives

Configuration 27-July-2021 79

4.5 delay

cms.delay parms

parms: [delnode sec] [discard num] [drop sec]

 [full {sec | *}] [hold msec] [lookup sec]

 [nostage nscnt][overload {sec | *}] [peer sec]

 [qdl sec] [qdn num] [servers num[%]] [service sec]

 [startup sec] [suspend sec]

Function

Manage processing latency.

Parameters

delnode sec

The maximum number of seconds that cmsd should wait to delete an in-use

node object. If the object is still in use after sec, it abandoned and its memory

lost. The default is 15 minutes.

discard num

The maximum number of times a message can be forwarded before it gets

discarded.

drop sec

The number of seconds a malfunctioning server is allowed to stay in the

configuration before it gets dropped. The delay allows time for a server

recover before clients are sent to other functioning servers. Clients are

delayed during the recovery window.

Directives Clustering Configuration

80 27-July-2021 Configuration

full sec

The number of seconds to delay a client when no eligible servers have

sufficient space to place a file. By default, delays due to insufficient disk space

are not allowed and when the condition occurs, the client is given an

ENOSPC error condition. You may decide that this is a recoverable condition

and are willing to let clients wait until disk space becomes available.

Specifying an asterisk uses a dynamically computed optimal value (see the

notes).

hold msec

The number of milliseconds to optimistically hold a file query request waiting

for a server to reply that the file is available. Should a server reply within this

window, the client is immediately redirected to that server, subject to the qdn

value.

lookup sec

The number of seconds to delay a client when trying to determine which

servers have the requested file on disk.

nostage nscnt

 Specifies how many staging servers a client may exclude when reselecting a

staging server due to an error. The default is 3.

overload sec

The number of seconds to delay a client when all available servers are

overloaded. Specifying an asterisk uses a dynamically computed optimal

value (see the notes).

peer sec

The number of seconds to delay a client when resources are not available in

the immediate cluster, peers have been specified but no peers are subscribed

qdl sec

The number of seconds by which a query must complete (i.e. query deadline)

with a positive response; after which the file is deemed to not exist. By

default, the qdl is set to be the same as the lookup value.

Clustering Configuration Directives

Configuration 27-July-2021 81

qdn num

The minimum number of servers that must have the file in order to redirect

the client within the hold period. The default is 1 which causes an immediate

redirection when a server indicates it has the requested file (i.e. the fastest

responder wins). Values greater than 64 are set to 64.

servers num[%]

The minimum number of servers that must be subscribed for load balancing

to be effective. The number may be suffixed with a percent sign. When

specified this way, the number of available servers must be no less that the

specified percentage of the maximum number of servers ever subscribed to

the cmsd manager since startup. This option effectively determines the server

quorum necessary for the cmsd to redirect clients.

service sec

The number of seconds to delay a client when fewer than num servers are

subscribed.

startup sec

The number of seconds to delay enabling manager service when initially

started. This time period allows for servers to subscribe while client requests

are delayed. Clients are delayed “service” seconds during this time.

suspend sec

The number of seconds to delay a client when a selected server is in suspend

state.

Defaults
cms.delay delnode 15m discard 7 drop 10m full 0 hold 178 lookup 5 nostage 3

cms.delay overload * peer 0 qdl 5 qdn 1 servers 80% service 15 startup 90

cms.delay suspend 30

Notes

1) This directive is only used by manager-mode cmsd’s.

2) All time values may be suffixed by s (the default), m , or h to indicate

seconds, minutes, and hours, respectively.

3) When specified, the qdl value should be greater than or equal to the

lookup value.

Directives Clustering Configuration

82 27-July-2021 Configuration

4) The overload delay is imposed when all eligible servers have a load

greater than the one specified maxload on the sched directive.

5) The full and load options allow you to specify an asterisk to choose the

optimal delay value. The optimal value is computed as

ping.ptime * ping.pcnt + 30

 The value is optimal because the load balancer will see no change in

external conditions until this amount of time has gone by. See the ping

directive for additional details.

6) Warning: The 80% default for servers works better as more servers join

the configuration since more servers can fail before the system enters a

holding pattern. For sites with less than 6 servers, you should specify a

fixed number.

7) When the system enters a holding pattern, also known as safe-mode,

clients are delayed until the conditions causing the situation are removed.

For example, when the number of servers falls below the quorum

established by the servers option, safe-mode is entered. The system

remains in safe-mode until a quorum is re-established.

8) The nostage option provides a limit on how many times a client may

reselect a staging server. The notion is that since all staging servers are the

same, an error encountered on one would also occur on any other staging

server. The default allows for three tries before the error is considered

permanent. This avoids needlessly redirecting clients to other servers.

Example
 cms.delay lookup 3 full *

Clustering Configuration Directives

Configuration 27-July-2021 83

hold

lookup

request

wait

lookup

request

wait

lookup

request

wait

request

not

 found

qdl

cmsd

client

4.5.1 Relationship Between hold & lookup Delay vs. qdl

The left–side graphic

illustrates the relationship

between the hold and

lookup delay and the qdl

(i.e. query deadline)

value. Initially, a client

makes a file-oriented

request (e.g. open, stat,

etc). If no cached information exists about the file the cmsd sets a query deadline qdl

seconds into the future and issues a file existence query to its subscribers. The

deadline establishes the time at which if no positive response is received the file is

deemed not to exist. It then places the client request in a special internal state for

hold milliseconds with the expectation of getting a positive response which would

direct the client to the correct server. If no positive response is received within the

hold period, the client is asked to wait lookup seconds and try again. The client

retries after the delay. If no response regarding the file has yet been received and the

query deadline has not passed the client is once again told to wait lookup seconds

and retry. The graphic shows that the deadline passes at some point during the third

lookup delay. So, when the client retries the third time, the client is immediately

told that the file does not exist.

There are several important aspects to understand. First, the qdl value works best if

it is an integral multiple of the lookup value. The lookup value should be small

enough not to impact overall performance but large enough to minimize retries. The

qdl value should be no larger than needed for the particular cluster configuration.

The default values work quite well for LAN-based clusters. Some tuning may be

required for WAN based clusters, especially if they are federated clusters with no

deterministic performance characteristics.

The default hold value is also optimized for LAN clusters and works best if positive

response times are rather short. Since no more than about 1000 requests can be

placed in hold wait, long hold times become ineffective when even a small fraction

of file existence requests produce no positive response. Generally, the special hold

state does not provide any benefit for WAN based clusters and should left at the

default value.

Directives Clustering Configuration

84 27-July-2021 Configuration

4.6 fxhold

cms.fxhold noloc ntime[h|m|s] [htime[h|m|s]] | htime[h|m|s]

Function

Set the time file existence information is to be cached in memory.

Parameters

ntime The number of seconds file non-existence information may be cached and

may be no less than 60 seconds. The time may be suffixed by h, m, or s (the

default) to indicate hours, minutes, or seconds, respectively. The default is

htime.

htime The number of seconds file existence information may be cached. The time

may be suffixed by h, m, or s (the default) to indicate hours, minutes, or

seconds, respectively.

Defaults
cms.fxhold 8h

Notes

1) This directive is only used by manager-mode cmsd’s.

2) The time limit for non-existence starts after the cache entry has been fully

validated. A cache entry is considered partially validated when a file

search is in progress or when server transitions are occurring.

3) A manager cmsd keeps track of where files are at each server-mode site.

To prevent information from getting very stale, it is discarded after the

time specified by the fxhold directive.

4) Setting the cache time too low will substantially increase overhead.

Example
 cms.fxhold 3h

Clustering Configuration Directives

Configuration 27-July-2021 85

4.7 fsxeq

cms.fsxeq { func } xpath

func: chmod | mkdir | mkpath | mv | rm | rmdir | trunc

Function

Designate the program to handle file meta-data operations.

Parameters

func One or more of the indicated functions (i.e., chmod, mkdir, mkpath, mv, rm,

rmdir, and trunc) that are to be handled by xpath.

xpath The absolute path to an executable file. The file will be invoked whenever the

cmsd is asked to execute one of list functions. Parameters specified after xpath

are passed to the program via the argument list. Quoted parameters should

not be specified as these are not correctly passed.

Defaults

 None. The cmsd will either use the native operating system call or the local

xrootd server to perform the functions.

Notes

1) This directive is only used by server-mode cmsd’s.

2) Any number of fsxeq directives may be specified in order to map different

programs to different functions.

3) The fsxeq directive is meant to be used in those situations where

additional processing needs to occur when one of the indicated functions

is executed (e.g., a file needs to be deleted from online disk as well as a

Mass Storage System).

4) The cmsd is asked to execute functions only if the ofs.forward directive

has been specified for the redirecting file server (e.g., xrootd). Refer to the

ofs configuration manual for more information.

Directives Clustering Configuration

86 27-July-2021 Configuration

5) Each function invokes xpath as follows:

Function Command Invocation

chmod xpath mode path

mkdir xpath mode path

mkpath xpath mode path

mv xpath oldpath_newpath

rm xpath path

rmdir xpath path

trunc xpath size path

6) The executable function must return a status code of zero upon success.

Upon failure, the status code should map to the appropriate <errno.h>

code that describes the failure.

Example
 cms.fsxeq mv rm /usr/local/bin/fs_cmsd –c /opt/fs/fs.cf

Clustering Configuration Directives

Configuration 27-July-2021 87

4.8 namelib (an oss directive)

oss.namelib path [parms]

Function

Specify the location of the file name mapping layer.

Parameters

path The absolute path to the shared library that contains an implementation of the

Name2Name interface that cmsd is to use to make logical file names to

physical name for file system specific operations (e.g., open, close, read, write,

rename, etc).

parms Optional parameters to be passed to the Name2Name object creation

function.

Defaults

A built-in minimal implementation driven via the localroot and remoteroot

directives is used.

Notes

1) The Name2Name interface is defined in XrdOucName2Name.hh include

file. Refer to this file on how to create a custom file name mapping

algorithm.

2) The Name2Name interface is also used by the oss component of xrootd.

3) The cmsd honors the oss namelib directive. This allows you to use a

single configuration file for the cms and oss components.

Example
 oss.namelib /opt/xrootd/lib/libN2N.so

Clustering Configuration Directives

Configuration 27-July-2021 89

4.9 nbsendq

cms.nbsendq {all | off | remote} [maxq {mq | none}]

 [warn wnum]

Function

Specify non-blocking send queue parameters.

Parameters

all Uses non-blocking sends for all LAN and WAN control messages.

off Never uses non-blocking sends for control messages.

remote

 Uses non-blocking sends for all WAN control messages; blocking sends are

used for LAN control messages. This is the default.

mq Is the maximum number of messages that may be queued for sending should

the connection be blocked. Any additional messages past this number are

discarded. If none is specified, messages are never discarded since no limit

applies.

wnum Issues a warning after this number of messages are queued.

Defaults

cms.nbsendq remote maxq 30 warn 3

Notes

1) The cmsd sends control messages for various actions such as file location,

file preparation, and location cache management, among other actions.

During periods of high activity, the number of messages that are sent may

exceed the speed or quality of the network connection to a particular

server causing sending to block. When sending is blocked, the cmsd may

suffer a severe slowdown in overall performance. This typically may

occur on WAN connections but rarely, if ever, on LAN connections.

Directives Clustering Configuration

90 27-July-2021 Configuration

2) In to avoid blocking on a slow connection, the cmsd uses non-blocking

sends for WAN connected servers. LAN connected nodes use, by default,

blocking sends to avoid message management overhead. The nbsendq

directive allows you to change this logic.

3) When a control message is discarded, the cmsd looses any information

related to the message. For instance, a file lookup message, when

discarded, would make it appear as if the target server does not have the

associated file. Hence, it is important to minimize discarding of messages.

The default of 30 queued messages should rarely be reached and if it is

reached, it typically indicates that the server associated with the

connection is unreliable and should likely not be used. So, lost messages

are acceptable in this case.

4) In order to avoid flooding the log with warning messages, the cmsd uses a

progressive reduction of such warnings. The first message will appear

when wnum messages are queued. A subsequent warning will appear

when double that number is queued. Subsequent warnings require even

more messages to be queued. The counter controlling the warning

messages is periodically reset.

Example
cms.nbsendq remote maxq 60 warn 10

Clustering Configuration Directives

Configuration 27-July-2021 91

4.10 nowait

cms.nowait

Function

Specify that the cmsd should not wait for the data server.

Defaults

None, you must specify the nowait directive or start the cmsd with –i to not

wait for a data server.

Notes

1) The nowait directive provides for a loose coupling between servers

running on the same host. The cmsd executes asynchronously from the

host’s data server and can subscribe to a manager before the data server is

available on the host.

2) Without nowait, a host is not available for selection until the host’s data

server is ready.

3) Once the xrootd contacts the cmsd, the host automatically becomes

ineligible for selection whenever the data server becomes unready,

4) The nowait option is meant for to be used with data servers that are

unable to communicate with the local cmsd. You should not specify this

option for the xrootd server.

5) Warning: the default cmsd mode (i.e., wait for data server) must be used

in conjunction with xrootd’s –t option; otherwise the host will never be

selected by the manager cmsd.

6) Warning: The nowait directive disables port remapping. With port

remapping, a client is redirected to the port actually being used by the

data server that is the target of the redirection. This allows arbitrary or

hidden ports to be used, none of which need be the same. When port

remapping is disabled, clients are always redirected to the port they

initially used to contact the redirector.

7) The nowait directive is automatically implied if you start the cmsd with

the –i option.

Example
cms.nowait

Directives Clustering Configuration

92 27-July-2021 Configuration

4.11 osslib (an ofs directive)

ofs.osslib path [parms]

Function

Specify the location of the storage system interface layer.

Parameters

path The absolute path to the shared library that contains an implementation of the

storage system interface that ofs is to use for storage access for file system

specific operations (e.g., open, close, read, write, rename, etc).

parms Optional parameters to be passed to the storage system object creation

function.

Defaults

A full-featured built-in implementation is enabled for use by the cmsd.

Notes

1) The storage system interface is defined in the XrdOss.hh include file.

Refer to this file on how to create a custom storage system

implementation.

2) A cmsd can automatically become a proxy for another manager cmsd if

the osslib implements a proxy mechanism. If you decide to run a proxy

cmsd then it and its xrootd counterpart should be configured with a role

of server.

3) The cmsd does not support plug-in stacking. Stack specifications are

ignored and the cmsd only uses the base plug-in.

Example
 ofs.osslib /opt/xrootd/lib/libmyOss.so

Clustering Configuration Directives

Configuration 27-July-2021 93

4.12 pidpath

all.pidpath path

Function

Specify the location of the pid file.

Parameters

path The path to be used to create the file where the daemon’s process id and local

prefix are stored.

Defaults

The process id file is written into /tmp.

Notes

1) The name of the pid file is determined by the cmsd’s role and the –n

option.

2) If the cmsd cannot create the pid file because either one already exists but

is not owned by the cmsd, or the directory permissions prohibit the cmsd

from creating new file; initialization fails and the cmsd exits.

3) To create a specific pidpath exception for the cmsd. Use the “cms” prefix

instead of “all”.

Example
 cms.pidpath /var/run/cmsd

Clustering Configuration Directives

Configuration 27-July-2021 95

4.13 ping

cms.ping ptime [log ucnt] [usage pcnt]

Function

Control the keep-alive and load reporting frequency.

Parameters

ptime The time between keep-alive requests sent to each server cmsd. The time may

be suffixed by s (the default), m , or h to indicate seconds, minutes, and

hours, respectively.

log ucnt

The number of usage requests that must be made before the reported usage is

logged. A value of 0 suppresses any logging of usage information.

usage pcnt

The number of pings that must occur before usage is requested from a server

cmsd. A value of 0 suppresses usage requests.

Defaults
 cms.ping 60 log 10 usage 10

Notes

1) This directive is only used by manager-mode cmsd’s.

2) Unspecified values in subsequent ping directives default to the last known

value.

3) Smaller ptime values will discover a failing cmsd is a smaller time window

at increasing overhead.

4) Smaller pcnt values will ask for usage information averaged across a

smaller time-window.

5) Usage information will be requested every pcnt*ptime seconds, assuming

ptime is in seconds. Select a pcnt/ptime value that averages usage across a

reasonable time window for your load (e.g., 5 to 10 minutes).

Directives Clustering Configuration

96 27-July-2021 Configuration

6) Usage information for each cmsd server will be logged every

ucnt*pcnt*ptime seconds, assuming ptime is in seconds. Choose any value

appropriate to your logging needs. For instance, 1 logs usage every time it

is requested while 0, the default, does not log usage.

7) When pcnt or ptime is set to zero, usage based load balancing is disabled.

This means that requests are scheduled round-robin.

8) In the subsequent example, keep-alive pings occur every 30 seconds.

Usage is requested every five minutes and never logged.

Example
cms.ping 30 log 0 usage 10

Clustering Configuration Directives

Configuration 27-July-2021 97

4.14 prepmsg

cms.prepmsg msgline

msgline: [text] [var] [msgline]

var: $CGI | $LFN | $PFN | $RFN | $NOTIFY | $OFLAG |

 $PRTY | $RID | $eVar

Function

Specify the message to be sent to a piping prep ifpgm when a prepare request

is received.

Parameters

text Arbitrary text.

var A variable whose value is determined by the current request setting. The

following variables may be specified:

$CGI all of the opaque information specified after the question mark

in the file path

$LFN logical file name

$PFN physical file name as modified by localroot or the namelib

plug-in

$RFN remote file name as modified by remoteroot or the namelib

plug-in

$NOTIFY notification string; as follows:

- no notification is to be sent.

file://path send an ofs event message via a Unix pipe

named path

mailto://user send e-mail to user

tcp://rhost:port/msg send msg via tcp to rhost:port

udp://rhost:port/msg send msg via udp to rhost:port

$OFLAG a character sequence describing the file open processing flags:
 w – O_WRONLY | O_RDWR r – O_RDONLY

$PRTY request priority

$RID request identifier

mailto:user

Directives Clustering Configuration

98 27-July-2021 Configuration

$eVar any variable that has been passed along with the file name as

opaque information

Defaults
+ $RID $NOTIFY $PRTY $OFLAG $LFN

Notes

1) Variables must begin with a $ (dollar sign) and end with a non-alpha-numeric

character.

2) To include a dollar sign into the message, escape it with a back slash (“\”).

3) A backslash escape is only recognized when followed by a dollar sign.

4) Important! The prepmsg msgline is not subject to general set variable

substitution.

5) Except for $CGI, the implicit value of a variable that has not been set is the

variable name itself, including the dollar sign.

6) For $CGI, if no opaque information is found, the variable is substituted with

the null string.

7) The default prepmsg slightly differs from the one given above in that

$OFLAG contains additional information. See the description of mode under

the prepare directive for additional information.

Example
 cms.prepmsg prepare $LFN $PFN $RFN

Clustering Configuration Directives

Configuration 27-July-2021 99

4.15 remoteroot (an oss directive)

oss.remoteroot path

Function

Specifies where the local file system name space is actually rooted in the

remote Mass Storage System.

Parameters

path The path to be pre-pended to any path sent to the Mass Storage System for

processing.

Defaults

None. Paths are sent to the Mass Storage System as specified.

Notes

1) The remoteroot parameter allows you to place the online file namespace in a

different location within the Mass Storage System. Say that the online file

system is mounted at /xrd. This means that all file paths start./xrd. If you

specified
oss.remoteroot /usr

then the file namespace would be rooted at /usr/xrd within the Mass Storage

system because all paths would be prefixed by /usr before being sent to the

Mass Storage System for processing.

2) The cmsd honors the oss remoteroot directive. This allows you to use a single

configuration file for the cms and oss components.

Example
 oss.remoteroot /usr

Directives Clustering Configuration

100 27-July-2021 Configuration

4.16 repstats

cms.repstats [-]soption [[-]soption] [• • •]

soption: all | frq | shr

Function

Enable additional statistical reporting.

Parameters

soption

The additional statistics to be reported when xrd.report specifies protocol

summary reporting. One or more options may be specified. The specifications

are cumulative and processed left to right. Each option may be optionally

prefixed by a minus sign to turn off the setting. Valid options are:

all all possible additional information

frq information about the fast response queue

shr share usage

Defaults

cms.repstats -all.

Notes

1) See the xrd.report directive in the Xrd/Xrootd reference on how to turn on

protocol summary reporting.

2) When protocol summary information is turned on, the cmsd reports basic

information that is usually sufficient for monitoring purposes. The

repstats directive allows you to request additional information that may

be useful for tuning purposes.

3) The frq information is only available for cmsd’s with a manager or

supervisory role.

4) The shr information is only available for meta-manager cmsd’s.

5) The Monitoring Reference on more information about the reported

statistics.

Example
cms.repstats shr

Clustering Configuration Directives

Configuration 27-July-2021 101

4.17 request

cms.request [delay secd] [fwdwait msf] [noresp num]

 [prepwait msp] [repwait secr]

Function

Specify request timing parameters.

Parameters

secd The number of seconds to delay an xrootd client when the cmsd has not

responded in secr seconds to a request to locate the file the client wishes to

access. The time may be suffixed by s (the default), m , or h to indicate

seconds, minutes, and hours, respectively.

msf The number of milliseconds of wait time to impose between forwarded

requests (i.e. mv, rmdir, and rm).

num The number of consecutive secr cmsd response timeouts that may be tolerated

before xrootd attempts to find another working cmsd manager.

msp The number of milliseconds of wait time to impose between prepare requests.

secr The maximum number of seconds to wait for a cmsd response. The time may

be suffixed by s (the default), m , or h to indicate seconds, minutes, and

hours, respectively.

Defaults
cms.request delay 5 fwdwait 0 noresp 4 prepwait 33 repwait 3

Notes

1) When a client attempts to locate a file a request is sent to the cmsd to

locate the best possible copy of the file. Should the cmsd not respond in

secr seconds, xrootd defers the client for secd seconds. After the time

period expires, the client automatically retries the request.

Example
 cms.request delay 3 repwait 1

Directives Clustering Configuration

102 27-July-2021 Configuration

4.18 subcluster

all.subcluster [of] host[+]{:port | port]

Function

Define a subordinate cluster that is actually part of another cluster.

Parameters

host The DNS name or IP address of the cmsd manager of the cluster that is to

accept this subordinate cluster. If host ends with a plus sign (+), then the all

hosts addresses associated with host are considered to be available managers.

port The TCP port number or service name at which the manager will accept

connections. The port may be specified with an adjacent colon or space

separation.

Defaults

None; see the Notes for requirements.

Notes

1) The subcluster directive is processed only for simple manager roles (i.e. not

qualified in any way); otherwise, it is ignored.

2) A subordinate cluster may only join managers within the same DNS domain.

Cross-domain clusters are not allowed.

3) The subcluster directive is cumulative in that the specified managers are

additive.

4) Subordinate clusters are useful for independently defining a special cluster

and then making it part of a larger cluster. For instance, a special cluster

could be one whose servers all have the same type of storage device (e.g.

SSD) and need to be managed as a unit.

5) This directive must be visible in the cmsd and xrootd configuration files.

Example
all.subcluster of headmanager.slac.stanford.edu:1213

Clustering Configuration Directives

Configuration 27-July-2021 103

4.19 superport

cms.superport port [if conds]

Function

Specify a supervisor’s TCP port number.

Parameters

port The TCP port number or service name at which the supervisor will accept

connections.

conds The conditions that must exist for this directive to apply. Refer to the

description of the if directive on how to specify conds.

Defaults

An arbitrary port is used.

Notes

1) The subcluster directive is applicable only for supervisor roles.

2) Normally, supervisors can use an arbitrary port and this is the common mode

of operation. The support directive allows you to specify a specific port

should the need arise.

Example
cms.superport 1717

Directives Clustering Configuration

104 27-July-2021 Configuration

4.20 vnid

cms.vnid {=id | <path | @libpath [parms]}

Function

Specify the unique virtual network identifier for the cmsd node.

Parameters

=id specifies the actual identifier.

<path specifies the path to a file that contains the identifier.

@libpath

 specifies the path to a shared library plug-in that supplies the identifier.

parms are optional parameters that are to be passed to the plug-in identified by

libpath.

Defaults

The virtual network identifier is the node’s IP address and host name, if any.

Notes

1) Virtual network identifiers may not exceed 64 characters and must be

composed of letters, digits, and punctuation characters excluding ampersand

(&) and the space character.

2) A virtual network identifier needs to be specified if the cmsd is running in a

virtual machine or a container and its IP address or host name may change

when it is restarted or relocated. Refer to the next section for more

information.

3) The vnid plug-in interface is defined in XrdCmsVnId.hh include file.

Example
cms.vnid =xyzzy/foo.fum

Clustering Configuration Directives

Configuration 27-July-2021 105

4.20.1 Using Virtual Network Identifiers

The cmsd is responsible for determining the location of each requested file or

resource. To speed this function, the manager and supervisor cmsd’s maintain a

cache of recently looked-up names (i.e. files or resources). The cache cross references

each name to the locations providing service to the name. When a server exists the

cluster, all resources associated with the server a made invisible for a configurable

amount of time (default of 10 minutes) to allow the server to re-enter the cluster and

revalidate all cache entries associated with the server. If the server does not re-enter

the cluster after the configurable deadline, all cache entries associated with the

server are purged. This mechanism provides maximum flexibility and performance.

The cmsd tracks cache entries relative to a server by the server’s IP address. This

works well for static environments where the IP address and DNS name are

predictable. Unfortunately, this is not always the case for servers that execute n

virtual machines or containers. For instance, in many environments virtual machines

may be relocated to a different physical host with a resultant IP address change. In

many containerized environments, IP addresses, as well as host names, are

reassigned when a container is restarted. Such occurrences make it impossible to

consistently track cache entries using a server’s IP address or even host name.

The cmsd solves these kinds of problems by providing a virtual network address

space. A virtual network is simply an external namespace overlaid on top of the

physical IP address network. This allows IP addresses and DNS names to change as

long as the virtual network identifier assigned to the server remains constant.

Associating the virtual network identifier with cache entries allows the IP address

and DNS name to change without invalidating the cache entries or, worse yet,

associating them with the wrong server.

Since control the virtual network identifier resides with the server, not the VM or

container infrastructure, a consistent network topology can be maintained. You

should assign a unique virtual network identifier to each node in your configuration

under the following conditions:

 servers run in virtual machines that can be relocated or do not have fixed IP

addresses,

 servers run in containers within an infrastructure that assigns an arbitrary IP

address when the container is restarted, or

 servers run in containers with host networking enabled but can be relocated

to a different host.

Directives Clustering Configuration

106 27-July-2021 Configuration

Additional considerations should be given to environments that export resources

(e.g. files) through arbitrary servers (e.g. when a file system can be associated with

any server at any time). This essentially destroys any association between a server

and the resources it is providing. In such cases, the virtual network identifier should

be associated with the resource (e.g. file system) not the server that is exporting the

resource.

The vnid directive provides various ways to establish the virtual network identifier.

The least flexible is to specify the identifier in the server’s configuration file since

that ties the server to the resource it is exporting. If you need to associate the virtual

network identifier with the resource for maximum flexibility, choose either the file

mechanism or write a plug-in to supply the correct virtual network identifier.

Containerized environments pose additional challenges when the cmsd’s

companion xrootd is run in the separate container. This potentially allows the

wrong xrootd to be associated with a cmsd upon restart of either one. By assigning

the same virtual network identifier to the xrootd and its specific cmsd, the system

can verify that a consistent network topology is being maintained regardless of how

IP addresses of DNS names change. To appreciate this problem, imagine an xrootd

that exports file system X connects to a cmsd which reports to its manager that it is

managing file system X. Then upon restarting the xrootd, it happens to connect to a

cmsd that reported that it is managing file system Y due to a previous xrootd

connection that no longer exists. Clearly, any cached information about locations in

file system X or Y will be incorrect. Such problems can be mitigated by making sure

that each xrootd and its companion cmsd have the same virtual network identifier.

Of course, such problems cease to exist when the xrootd and its companion cmsd

reside in the same container; which is the recommended setup.

Finally, you must make sure that virtual network identifiers are unique. The system

rejects duplicate network identifiers much like TCP rejects duplicate IP addresses.

However, just like TCP it is impossible to fully reject messages sent by nodes with

duplicate virtual network identifiers. This may lead, as expected, to undefined

behavior.

Clustering Configuration Directives

Configuration 27-July-2021 107

4.20.2 Virtual Network Identifiers and Kubernetes

The Kubernetes container deployment framework allows you to easily specify

virtual network identifiers via the label attribute you can assign to pods. Each pod is

assumed to contain all the components that are required for a functioning XRootD

instance. It also assumes that the exported resource (e.g. file system) is tightly bound

to the XRootD server in the defined pod. If all of this is true then you can use a pod

label in its yaml configuration file to assign the virtual network identifier. This is

known as a downward API specification. So, in a typical yaml file defining a server

container you would typically specify the following (note that metadata.name

should be unique to each pod):

apiVersion: v1

kind: Pod

metadata:

 name: XRootD.0001

spec:

 containers:

 - name: test-container

 image: XrootD-image

 command: ["/bin/sh", "-c", "env"]

 env:

 - name: MY_POD_NAME

 valueFrom:

 fieldRef:

 fieldPath: metadata.name

 ...

Then in your XRootD configuration file you can specify

cms.vnid =$MY_POD_NAME

This works under the following assumptions:

a) Each pod represent a unique resource provider (i.e. XRootD plus cmsd

instance),

b) The resource is tightly bound to the containers in the pod (i.e. file system).

c) Each pod name is absolutely unique.

Directives Clustering Configuration

108 27-July-2021 Configuration

4.21 trace

cms.trace [-]toption [[-]toption] [• • •]

toption: all | debug | defer | files | forward |

 redirect | space | stage

Function

Enable tracing.

Parameters

toption

The tracing level. One or more options may be specified. The specifications

are cumulative and processed left to right. Each option may be optionally

prefixed by a minus sign to turn off the setting. Valid options are:

all selects all possible trace levels except debug

debug traces internal functions in cmsd and the xrootd cmsd client

defer traces imposed wait responses in cmsd

files traces file location requests and responses

forward traces forwarded functions in the xrootd cmsd client

redirect traces request redirection in the xrootd cmsd client

space traces changes in space utilization in the xrootd cmsd client

stage traces binding of locate requests to servers to have promised to

stage in files in cmsd.

Defaults

cms.trace -all.

Notes

1) The cmsd –d command line option is equivalent to cms.trace all debug.

Example
cms.trace debug

Clustering Configuration Directives

Configuration 27-July-2021 109

4.22 whitelist

cms.whitelist [check sec] [path]

Function

White list one or more nodes.

Parameters

sec is the amount of time between checks whether or not the whitelist file has

been changed. When a change is detected, the file is reprocessed and the

whitelist updated. The time may be suffixed by s (the default), m , or h to

indicate seconds, minutes, and hours, respectively. The default is 10 minutes

(i.e. 10m) and may not be less than one minute.

path is the absolute path of the whitelist file. The default is name of the whitelist

file is “cms.whitelist” which is assumed to exist in the configuration file

directory.

Defaults
 cms.whitelist check 10m configdirpath/cms.whitelist

Notes

1) White-listing is not applied unless the cms.whitelist directive is specified.

You need not specify any options if the defaults are acceptable.

2) If the configuration file contains a cms.blacklist directive as well as a

cms.whitelist directive, the last such directive applies.

3) Refer to the following section on how to code a whitelist file.

4) The cms.whitelist directive only applies to nodes with a manager or meta-

manager role.

5) White-listed nodes are allowed to login. Nodes that do not match any

specification in the whitelist are prohibited from logging in (i.e. they are

blacklisted).

6) White-listed entries may be redirected to another cluster. If this occurs, the

no login retries are attempted at the redirecting host.

7) Redirection is only supported for CMS clients at version 4.2 or above.

Clients below this version are effectively blacklisted and not redirected.

Directives Clustering Configuration

110 27-July-2021 Configuration

8) Nodes that are already logged in and found to no longer be white-listed

and not redirected are disabled and forced to logoff.

9) Nodes that are already logged in and found to be redirected are asked to

disconnect and retry the login; which causes a redirect. If the node does

not disconnect within the ping interval, it is forcibly disconnected.

10) If the whitelist file is not present, no controls are applied (i.e. all

connections are allowed to login).

11) If the whitelist file is present but contains a syntax error or cannot be read,

the current white-list is not changed.

Example
 cms.whitelist /var/run/cms.whitelist

Clustering Configuration Directives

Configuration 27-July-2021 111

5 Blacklist and Whitelist File Format
The black or white list file consists of new line separated records. A line may be

blank, contain a comment (i.e. the first non-space character is a pound sign, #), or

contain a single specification of the host(s) that are blacklisted or whitelisted. The

format of the specification is shown below.

hostspec | [hpfx]*[hsfx] [redirect target]

hostspec: fulldnsname | [ipv6address] | ipv4address

target: fulldnsname[+]:port [target]

Parameters

hostspec

 The DNS registered name or IP address. IPV6 addresses must be surrounded

by brackets. The host matching this specification is either blacklisted or

whitelisted. In general, blacklisting and whitelisting work best when DNS

names are used.

hpfx The starting characters of a DNS registered name. If specified, the leading

characters must match the host’s name in order for the record to apply.

hsfx The trailing characters of a DNS registered name. If specified, the trailing

characters must match the host’s name in order for the record to apply.

target Where a matching host is to be redirected. If a manager node target is

replicated, you should specify all of the replicated nodes either by listing

individually them or using a DNS alias that associated all of the replicas

together. If you are using a DNS alias, you must specify a plus sign (+) after

the DNS alias name.

Notes

1) The cms.blacklist directive prohibits hosts with a matching entry in the

file from logging in. The cms.whitelist directive does the opposite; hosts

with a matching entry in the file are allowed to login.

2) Host matching occurs in the same order as the entries appear in the file.

Directives Clustering Configuration

112 27-July-2021 Configuration

3) When you redirect to multiple targets, the host assumes that these are

replicas and function identically. It disconnects from all managers

associated with the manager that provided the redirect, then connects to

each of the specified nodes, and resumes normal operation.

4) Redirecting to functionally non-identical nodes will produce non-

deterministic file look-up behavior and should not be done.

5) Redirection works for black lists or white lists.

6) You may not specify more than 255 lexically different redirect targets.

7) Redirection is only supported for CMS clients at version 4.2 or above.

Clients below this version are only blacklisted and not redirected.

8) To safely update the blacklist or whitelist file in-place, follow the steps:

a. Copy the existing file to a temporary location in the same directory,

b. Update the copy as needed, and

c. Rename the temporary copy to the original name using the mv

command or rename() function.

Example
 # Apply rule to a single host

 #

 foobar.slac.edu

 # Apply rule to a domain

 #

 *infn.it

 # Apply rule to a group of hosts

 #

 worker*.slac.edu

 # Redirect a domain to a replicated manager

 #

 *google.com redirect manager.cern.ch+:1213

 # Specifically for the white list, allow a domain but

 # redirect all other hosts elsewhere via two entries

 #

 *slac.edu

 * redirect manager.bnl.gov:1213

Clustering Configuration Documentation Changes

Configuration 27-July-2021 113

6 Document Change History

26 October 2007

 New manual to document the Cluster Management Service.

1 December 2007

 Describe the meta manager attribute in the manager and role

directives.

8 December 2007

 Describe the seclib directive.

8 January 2008

 Add documentation on StartCMS and StopCMS.

 Document the prepmsg directive.

 General cleanup.

7 April 2008

 Document trunc under the fsxeq directive.

11 April 2008

 Document min% and hwm% in the space directive.

6 January 2009

 Correct description of the default prepmsg.

 Change priority scale from 0-9 to 0-2.

 Deprecate mps_prep and mps_PreStage as frm_psgta and frm_pstgd

have replaced them.

21 April 2009

 Document XrdCnsd and the cns_ssi command.

5 October 2009

 Document the –L, -N, and –R options of the XrdCnsd command.

17 November 2009

 Document the –B option of the XrdCnsd command.

Documentation Changes Clustering Configuration

114 27-July-2021 Configuration

17 March 2010

 Preferentially document ‘all.pidpath’ as opposed to ‘cms.pidpath’.

 Minor text corrections.

26 April 2010

 Document oss.space directive instead of deprecated oss.cache directive.

 Document the new built-in prepare mechanism based on the File

Residency Manager.

 Minor text corrections.

6 January 2011

 Document the ‘ofs.osslib’ directive for cmsd use.

22 February 2011

 Document the ‘cms.dfs’ directive for cmsd use.

8 March 2011

 Document the ‘cms.delay qdl’ option.

 Document the –b, –p, and –s command line options.

 Document the fwdwait option of the cms.request directive.

6 June 2011

 Document the ‘cms.delay qdn’ option.

 Document the ‘cms.shed gsdflt’ option.

 Document the ‘cms.shed gshr’ option.

 Document the ‘cms.repstats’ directive.

6 June 2011

 Correct example of using the XrdCnsd as a command.

-------------- Release 3.1.0

-------------- Release 3.1.1

-------------- Release 3.2.0

-------------- Release 3.2.1

-------------- Release 3.2.2

-------------- Release 3.2.3

-------------- Release 3.2.4

23 September 2012

 Remove unneeded directive in configuration examples.

Clustering Configuration Documentation Changes

Configuration 27-July-2021 115

-------------- Release 3.2.5

-------------- Release 3.2.6

-------------- Release 3.2.7

31 October 2012

 Document the altds directive.

 Deprecate the xmilib directive.

-------------- Release 3.3.0

-------------- Release 3.3.1

-------------- Release 3.3.2

-------------- Release 3.3.3

-------------- Release 3.3.4

-------------- Release 3.3.5

-------------- Release 3.3.6

23 February 2013 (IPV6 Introduction)

 Document the –I command line option.

 Document the cache option in the xrd.network directive.

12 August 2013

 Document the extended –k, –l and –z command line options.

 Document exported environment variables.

 Document the environment information file contents.

 General clean-up and better explanations.

6 September 2013

 Simplify the role directive by removing the peer option.

 Fully explain the peer option in the manager directive.

 Redefine the peer option of the delay directive.

 Remove the unsupported xmilib directive..

19 January 2014

 Document the cms.blacklist directive.

2 April 2014

 Better explain the manager all and any options.

 Better explain the delay hold, lookup, and qdl options.

Documentation Changes Clustering Configuration

116 27-July-2021 Configuration

-------------- Release 4.0.0

-------------- Release 4.0.1

-------------- Release 4.0.2

-------------- Release 4.0.3

-------------- Release 4.0.4

13 October 2014

 Document the new subcluster directive.

15 October 2014

 Change cms.subcluster to all.subcluster directive so that the OFS and

CMS components see the configuration.

-------------- Release 4.1.0 to 4.2.3

9 December 2014

 Document how to support disjoint clusters by using the host name

qualifies on the all.manager directive.

 Document the cms.whitelist directive.

 Document the redirect option in the blacklist and whitelist files.

17 November 2015

 Document cms.cidtag directive.

 Document the delnode option of the cms.delay directive.

 Document the files option of the cms.trace directive.

 Correct the definition of the –d option in the cms.trace section.

25 November 2015

 Document nostage option of the cms.delay directive.

 Document retries option of the cms.dfs directive.

 Explain the side-effects of the –s command line option on the placement

of the environmental file.

-------------- Release 4.3.0

10 February 2016

 Document the mode option of the cms.sched directive.

Clustering Configuration Documentation Changes

Configuration 27-July-2021 117

18 April 2016

 Document log file plug-ins.

 Add admonition of when the all.role directive should not be used.

20 June 2016

 Document the cse logging plug-in parameter.

-------------- Release 4.4.0

21 October 2016

 Document the noloc option of the cms.fxhold directive.

-------------- Release 4.5.0

6 February 2018

 Document the cms.nbsendq directive.

 Document the cms.superport directive.

 Document the cms.vnid directive.

 Add section explaining virtual network identifies.

8 May 2019

 Document the maxretries and nomultisrc options in the cms.sched

directive.

21 June 2019

 Add information about running clusters using a container orchestration

system and how to stop daemons to the FAQ.

17 September 2019

 Document the xrootd and lib arguments in the cms.perf directive.

 Add missing protocol token, xroot, to the cms.altds directives.

10 April 2020

 Document the space argument in the cms.trace directive.

14 April 2020

 Document the -a, -A , -w, and -W command line options.

 Document the xrd.homepath directivee.

Documentation Changes Clustering Configuration

118 27-July-2021 Configuration

14 October 2020

 Document the %iname specification on the all.manager directive.

14 June 2021

 Document that the mdhold option of the cms.dfs directive is

incompatible with http[s].

27 July 2021

 Document that the affpath option of the cms.sched directive.

