

Configuration File Syntax

6 April 2022
Release 5.5+

Andrew Hanushevsky

ii Configuration File Syntax 6-April-2022

Scalla: Structured Cluster Architecture for Low Latency Access

©2004-2022 by the Board of Trustees of the Leland Stanford, Jr., University
All Rights Reserved

Produced under contract DE-AC02-76-SFO0515 with the Department of Energy
This code is open-sourced under a GNU Lesser General Public license.

For LGPL terms and conditions see http://www.gnu.org/licenses/

http://www.gnu.org/licenses/

Configuration Synatx Contents

6-April-2022 Configuration File Syntax iii

1 Introduction.. 5

2 Specifying Conditional Directives.. 7

3 Configuration File Continuation ... 11

4 Using set Variables .. 13

4.1 Assigning Variable Values ...13

4.2 Substituting Variables ..15

4.3 Specifying set Options..17

4.4 Assigning Environmental Variable Values18

5 Document Change History .. 21

Configuration Configuration Syntax

6-April-2022 Configuration File Syntax 5

1 Introduction

This document describes the syntax used in the configuration file for xrootd, cmsd,

and all other related components. Refer to the respective configuration documents

on directive details.

All configuration directives start with a prefix identifying the system component to

which the directive applies. The prefix is separated by the actual directive keyword

by a single period. This allows configuration of all aspects of a system using a single

configuration file. The following table lists valid prefixes

Prefix System Component
acc Access control (i.e., authorization)
cms Cluster Management Services
dig The digFS built-in file system
frm File Residency Manager
http HTTP protocol plug-in.
ofs Open file system coordinating acc, cms & oss components
oss Open storage system (i.e., file system implementation)
pfc Proxy File Cache plug-in
pss Proxy Storage Service plug-in
sec Security authentication
xrd Extended Request Daemon

xrootd The xrootd protocol implementation.
all Applies the directive to all of the above components.

Records that do not start with a recognized identifier are ignored. This includes blank

record, comment lines (i.e., lines starting with a pound sign, #), and prefixes not

immediately followed by a single period. Because each component has a unique

prefix, a common configuration file can be used for the whole system. The location

of the configuration file is specified on the command line. Refer to the reference

manuals for each component on how it locates the configuration files.

This guide documents the basic directive syntax and describes the use of conditional

statements and set variables within the configuration file.

Configuration Configuration Syntax

6-April-2022 Configuration File Syntax 7

2 Specifying Conditional Directives

The if-fi directives are used to allow you to optionally include directives based on

host and instance name. The syntax for this directive pair is:

 if [hostpat [. . .]] [conds]

 [directives when if is true]

[else if [hostpat [. . .]] [conds]

 [directives when all previous if’s are false

 and this if is true]

]

●

● [additional “else if” clauses, as desired]

●

[else

 [directives when all previous if’s are false]

]

 fi

hostpat: host | host+ | pfx* | *sfx | pfx*sfx]

conds: cond1 | cond2 | cond3

cond1: defined var [. . .] [&& {cond1 | cond2 | cond3}]

cond2: exec pgm [. . .] [&& cond3]

cond3: named name [. . .]

var: ?varname | ?~varname

Function

Specify the conditions under which subsequent directives are to be used.

Configuration Syntax Configuration

8 Configuration File Syntax 6-April-2022

Parameters

hostpat

The pattern of the host to which subsequent directive applies. All non-

applicable hosts ignore all directives until the next else or fi. Host patterns

are:

host Any host that matches the specified DNS name.

host+ Any host that has an address that matches any of the addresses

assigned to host.

pfx* Any host starting with pfx.

*sfx Any host ending with sfx.

pfx*sfx Any host beginning with pfx and ending with sfx.

name An instance name (i.e., a name that can be specified using the –n command

line option). All directives until the next else or fi are ignored unless the

executable has been given one of the instance names in the list of names.

pgm The prefix-name of the executable. The prefix-name is defined to be all of the

characters in the base filename (i.e., the directory path removed) up to but not

including the first dot in the name, if any. If the name starts with a dot, the

prefix-name is the complete base filename. All directives until the next else or

fi are ignored unless the executable has the given name.

var A set variable name or an environmental variable name, varname. “?varname”

refers to set variable; while “?~varname” refers to an environmental variable.

All directives until the next else or fi are ignored unless one of the specified

variables in the list of variables is defined.

Defaults

None. At least one hostpat, defined, exec or the named keyword must be

specified.

Notes

1) All specified conditions must be true (i.e., hostpat, defined, exec, and

named) for the subsequent directives to be used.

2) A double ampersand (&&) is used to “and” two or more named tests. Be

aware that the specified named tests must appear in the specific order (i.e.

defined before exec and exec before named).

3) A qualified if is an if that is preceded by an else on the same line. An

unqualified if is an if that appears first on a line.

Configuration Configuration Syntax

6-April-2022 Configuration File Syntax 9

4) Every unqualified if must be followed by a fi. Every fi must be preceded

by a qualified or unqualified if.

5) Every else must be preceded by a qualified or unqualified if.

6) Nested unqualified if directives are not allowed.

7) The name anon refers to servers that were not given a name via –n.

8) Some directives allow the “if” to be placed as the rightmost tokens on the

associated directive line. For these directives, no “fi” is required as the end

of the line determines the if’s scope.

Examples
 if *slac.stanford.edu named anon

 xrd.port 9999

 fi

if named public

xrd.port 8888

else

xrd.port 9999

fi

if exec cmsd && named public

xrd.port 2131

else

xrd.port 1094

fi

if exec cmsd && named public

xrd.port 2131

else if exec cmsd && named private

xrd.port 3121

else

xrd.port 1094

fi

if defined ?~EXPORTPATH

set exportpath = $EXPORTPATH

else

set exportpath = /tmp

fi

all.export $exportpath

Configuration Configuration Syntax

6-April-2022 Configuration File Syntax 11

3 Configuration File Continuation

continue [[?]{dirpath | filepath]] [sfx] [if spec]

sfx: *txt [sfx]

Function
Specify the file(s) to continue the current configuration file.

Parameters

dirpath

the path to a directory holding additional configuration files. The directory is

scanned for applicable files and each such file, in lexical order, is used to extend

the current configuration file. Applicable files are those that

a) do not start with a dot (.),

b) are not marked as executable files, and

c) do not end with the historical suffixes of “.cfsaved”, “.rpmsave”,

“.rpmnew”, “.dpkg-old”, “.dpkg-dist”, or “~” (i.e. tilde).

filepath

the path to a file holding additional configuration directives. The file is used as

an immediate continuation to the current configuration file. The file is

acceptable as long as it does not have the execute bit set.

sfx one or more file suffixes that are allowed to be continuations (files marked as

executable are still ignored). This option is only meaningful when dirpath is

specified. When filepath is specified, any specified valid suffix specifications are

ignored.

txt the characters that must appear at the end of the filename for the file to be

considered applicable.

spec a valid if directive clause. The continue statement only applies if the clause

evaluates to true.

Configuration Syntax Configuration

12 Configuration File Syntax 6-April-2022

Notes

1) A continue directive with no arguments simply continues the processing

of the current configuration file. An empty argument list may occur due to

variable substitution.

2) The continue directive is not allowed in a continuation (i.e., a continuation

may not continue to another file).

3) The continue directive may not appear in an if-else-fi clause. Use an

inline if to control its applicability.

4) Continuations are particularly useful for defining a base configuration

that allows site, VM or container specific augmentation.

5) Be very aware that component directives may be cumulative or

replaceable. Refer to the specific directive that you wish to alter should it

appear in an antecedent configuration file.

Example
 continue /etc/morecfg .cf .cfg .conf if named foobar

Configuration Configuration Syntax

6-April-2022 Configuration File Syntax 13

4 Using set Variables

4.1 Assigning Variable Values

set var { = { value | varname } | < path }

varname: $envvar | $(envvar) | ${envvar} | $[envvar]

Function

Specify the value a set variable must have.

Parameters

var The name of a variable. Variable names may only contain letters and digits

and should start with a letter. Case is significant. Variable names may not be

longer than 63 characters.

value The value to be assigned to the variable. It must consist of a single non-blank

text token no longer than 511 characters.

path The path to the file that contains the value to be assigned to the variable. The

file must not be longer than 1023 characters.

varname

The value comes from an environmental variable named envvar. The

environmental variable must not be longer than 511 characters. In most cases

the environmental variable must be defined, as explained below.

Specification Defined envvar Undefined envvar

$envvar Definition substituted Fatal error

$(envvar) Definition substituted Fatal error

${envvar} Definition substituted Fatal error

$[envvar] Definition substituted Null string substituted

Notes

1) Unless $[envvar] notation is used; use of an environmental variable that

has not been set is considered to be a fatal error.

Configuration Syntax Configuration

14 Configuration File Syntax 6-April-2022

Example
 set myVar = myToken

set yourVar=$EnvVar

Configuration Configuration Syntax

6-April-2022 Configuration File Syntax 15

4.2 Substituting Variables

1
st
_token subs

subs: [vname][text][subs]

vname: $var | ${var} | $(var) | $[var]

Function

Specify a variable to be substituted by its set value.

Parameters

1st_token

 The first token in any line of a configuration file. The first token may never

specify a variable and is one of the following:

 A prefixed directive

 if, else, or the token fi

 set

 # (indicating a comment)

text Any text.

vname The name of a set variable. The variable name ends when an non-

alphanumeric character is encountered; including the of the line. The

variable’s value replaces name, as follows:

Specification Defined var Undefined var

$var Definition substituted Fatal error

$(var) Definition substituted Fatal error

${var} Definition substituted Fatal error

$[var] Definition substituted Null string substituted

Notes

1) Except for $[var]; use of a variable that has not been set is considered to be

a fatal error.

2) Variables may be used in any text line other than a set statement.

3) Substitution occurs only once. Substituted lines are never rescanned.

Configuration Syntax Configuration

16 Configuration File Syntax 6-April-2022

Example
set myHost = io.slac.stanford.edu

set myPath = /foo/fum/fi/

all.role manager if $myHost

 ofs.fslib $(myPath)libXrdOfs.so

Configuration Configuration Syntax

6-April-2022 Configuration File Syntax 17

4.3 Specifying set Options

set { -q | -v | -V }

Function

Specify the level of substitution detail.

Parameters

-q Enables quiet mode. Neither substitutions nor substituted lines are displayed.

-v Enables verbose mode. While substitutions are not displayed; substituted

lines are displayed. This is the default.

-V Enables very verbose mode. Both substitutions and substituted lines are

displayed.

Defaults

set -v

Notes

1) Configuration files are processed by multiple components. Every time a

component scans through a configuration file and “-v” is in effect,

substituted lines used by that component are displayed.

2) When “-V” is in effect, every time a variable is given a value the

assignment is displayed. This means that each component scanning

through the configuration file will generate a display of all set statements.

Example
 set -V

Configuration Syntax Configuration

18 Configuration File Syntax 6-April-2022

4.4 Assigning Environmental Variable Values

setenv envvar { = { value | varname } | < path }

varname: $var | $(var) | ${var} | $[var]

Function

Specify the value a environmental variable must have.

Parameters

envvar The name of an environmental variable. Variable names may only contain

letters and digits and should start with a letter. Case is significant.

Environmental variable names may not be longer than 63 characters and may

not start with XRD.

value The value to be assigned to the environmental variable. It must consist of a

single non-blank text token no longer than 511 characters.

varname

The value comes from a set variable named var. In most cases the set variable

must be defined, as explained below.

path The path to the file that contains the value to be assigned to the variable. The

file must not be longer than 1023 characters.

Specification Defined envvar Undefined envvar

$var Definition substituted Fatal error

$(var) Definition substituted Fatal error

${var} Definition substituted Fatal error

$[var] Definition substituted Null string substituted

Notes

1) Unless $[var] notation is used; use of an environmental variable that has

not been set is considered to be a fatal error.

Example
 setenv EnvVar = myToken

set myPath = /foo/fum/fi/

Configuration Configuration Syntax

6-April-2022 Configuration File Syntax 19

setenv EnvPath = $[myPath]

Configuration Documentation Changes

6-April-2022 Configuration File Syntax 21

5 Document Change History

29 March 2007

 Manual introduced.

8 January 2008

 Deprecate the odc and olb components.

23 June 2009

 Document the new “if/else if/else/fi” construct.

13 November 2010

 Document the new “setenv” construct.

 Allow undefined variables to be used via the $[] construct.

 Remove references to the odc and olb components.

4 May 2014

 Document the new defined if-test construct.

 Add http as a component name.

14 August 2015

 Add missing components to the component table (i.e. dig, frm, pfc, and pss).

 Explain the use of the double ampersand.

27 July 2018

 Document the continue directive.

6 April 2022

 Document that the set and setenv constructs can obtain the value from a file.

