

XRootD Configuration Reference

30-March--2022

Release 5.5.0 and above

Andrew Hanushevsky

ii XRootD Configuration 30-March-2022

©2004-2022 by the Board of Trustees of the Leland Stanford, Jr., University

All Rights Reserved

Produced under contract DE-AC02-76-SFO0515 with the Department of Energy
This code is open-sourced under a GNU Lesser General Public license.

For LGPL terms and conditions see http://www.gnu.org/licenses/

http://www.gnu.org/licenses/

Configuration Contents

30-March-2022 XRootD Configuration iii

1 Introduction.. 7

1.1 Security Considerations ...8

1.2 Starting the xrootd Daemon...9

1.2.1 Multiple Instances and Automatic Fencing ... 15

1.2.2 Passing Plug-In Command Line Arguments ... 16

1.2.3 Log File Plug-Ins .. 17

1.2.4 Files created by xrootd .. 18

1.2.4.1 Environmental Information File .. 18

1.2.5 Exported Environment Variables .. 19

2 Framework Directives by Category .. 21

2.1 Debugging ..21

2.2 Monitoring ..21

2.3 Networking...21

2.4 Operational Environment ..21

2.5 Protocol support ...21

2.6 Security and TLS...22

2.7 Tuning ...22

3 Common Framework Configuration Directives 23

3.1 adminpath...23

3.1.1 Administrative Interface ... 25

3.2 allow..26

3.3 homepath ..27

3.4 tls (required for TLS) ..29

3.5 tlsca (required for TLS) ...31

4 Esoteric Framework Configuration Directives.................... 35

4.1 buffers ...35

4.2 network ...37

4.2.1 Dual Public/Private Network Guidelines... 41

4.2.2 Resolving Private IP Addresses ... 42

4.2.3 Dynamic DNS ... 42

4.3 pidpath..43

4.4 port ..45

4.5 protocol ...47

4.6 report...49

Contents Configuration

iv XRootD Configuration 30-March-2022

4.7 sched ... 51

4.8 sitename .. 53

4.9 tcpmonlib .. 55

4.10 timeout.. 57

4.11 tlsciphers ... 59

4.12 trace... 60

5 xrootd Directives by Category .. 63

5.1 Data Access... 63

5.2 Data Integrity ... 63

5.3 Debugging .. 63

5.4 Monitoring.. 63

5.5 Prepare Processing ... 63

5.6 Security ... 63

5.7 Tuning... 63

6 Common xrootd Configuration Directives........................... 65

6.1 export .. 65

6.2 seclib ... 67

7 Esoteric xrootd Configuration Directives 69

7.1 async ... 69

7.2 bindif... 72

7.3 chksum.. 73

7.4 diglib ... 76

7.4.1 Authorizing digFS Access... 77

7.4.2 Optional digFS Directives ... 80

7.4.2.1 addconf.. 80

7.4.2.2 log ... 81

7.4.3 Using digFS ... 82

7.5 fslib.. 83

7.6 fsoverload ... 85

7.7 log ... 87

7.8 mongstream .. 89

7.9 monitor ... 93

7.10 pmark.. 99

7.11 prep ... 105

Configuration Contents

30-March-2022 XRootD Configuration v

7.12 redirect .. 107

7.13 tls ... 111

7.14 trace ... 113

8 Enabling HTTP Access ... 115

8.1 Enabling HTTPS ... 117

8.1.1 Backward Compatibility and Overrides... 119

8.2 Directives to Enhance HTTPS Access .. 119

8.2.1 desthttps .. 120

8.2.2 gridmap ... 121

8.2.3 httpsmode.. 122

8.2.4 secretkey .. 123

8.2.5 selfhttps2http .. 124

8.2.6 secxtractor ... 125

8.2.7 tlsreuse ... 126

8.2.8 Deprecated HTTPS Directives.. 127

8.2.8.1 cadir.. 127

8.2.8.2 cafile... 128

8.2.8.3 cert .. 129

8.2.8.4 cipherfilter .. 130

8.2.8.5 key .. 131

8.3 Common Directives.. 132

8.3.1 embeddedstatic... 132

8.3.2 exthandler.. 133

8.3.3 header2cgi ... 134

8.3.4 listingdeny... 135

8.3.5 listingredir ... 136

8.3.6 staticpreload.. 137

8.3.7 staticredir... 138

8.3.8 trace .. 139

9 Document Change History .. 141

Configuration Introduction

30-March-2022 XRootD Configuration 7

1 Introduction

This document describes the eXtended Request Daemon (xrd) configuration

directives protocols that can be used with xrd: cmsd, HTTP, and xrootd. It also

includes the directives for the xrootd daemon that can run xroot and HTTP

protocols. The cmsd-specific directives are described in a separate reference manual.

The xrd is a framework that can dynamically support multiple TCP/IP application

service layer protocols. It is designed to provide a high performance environment

for application services. The xrd is a generalized framework and it makes its

primary decision on which protocol to support based on the name given to the

executable. Currently, the following executable names are fully supported:

 cmsd daemon for the cms server clustering protocol, and

 xrootd daemon for xroot and other related protocols.

Configuration directives come from a configuration file. Directives are prefixed by

the component acronym they apply to, as shown in the following table. This makes

creating a single configuration file for all services possible.

Component Purpose
acc Access control (i.e., authorization)
cms Cluster Management Services
frm File Residency Manager
ofs Open File System
oss Open Storage System (i.e., file system implementation)
pfc Proxy File Cache
pss Proxy Storage Service
sec Security authentication
xrd Extended Request Daemon

xrootd The xroot protocol implementation.
http The HTTP protocol implementation.
all Applies the directive to all of the above components.

Records that do not start with a recognized identifier are ignored. This includes blank

record and comment lines (i.e., lines starting with a pound sign, #). This guide

documents the all, http, xrd, and xrootd configuration directives (i.e., the un-shaded

rows). Other directives are documented in supplemental references specific to the

component they deal with.

Introduction Configuration

8 XRootD Configuration 30-March-2022

The location of the configuration file is specified on the xrootd command line. Refer

to the reference manuals for other components on how they locate their respective

configuration files.

Refer to the manual “Configuration File Syntax” on how to specify and use

conditional directives and set variables. These features are indispensable for

complex configuration files usually encountered in large installations.

1.1 Security Considerations

The xrd framework relies on the loaded protocol(s) for strong authentication (e.g.,

Kerberos, GSI, etc.). Therefore, security is a protocol issue. The xroot protocol

provide strong authentication should you choose to use it. Refer to each protocol on

how to configure strong authentication.

The xrd framework does provide host-based authentication. While this type of

authentication can be subverted in a number of ways, it still is a practical mechanism

for installations that do not need strong authentication. The allow directive can be

used to restrict the range of hosts that can connect to the daemon. This security can

be used together with any protocol-provided security.

Because the xrd framework does not intrinsically provide strong authentication; you

should not run xrootd as super-user (i.e., Unix root). Any attempt to do so without

indicating that you really want to run super-user (see the -R command line option)

will cause the program to exit.

Configuration Starting the Daemon

30-March-2022 XRootD Configuration 9

1.2 Starting the xrootd Daemon

Use the following command to start the xrd-based xrootd daemon:

xrootd [options] [path [path [. . .]] [piargs]

options: [-c cfn] [-l largs]

 [-k {num | sz{k|m|g} | sig}] [esoteric]

esoteric: [{-a | -A} apath] [-b] [-d] [-h] [-I {v4 | v6}]

 [-n name] [-R user] [-s pfn] [-S site]

 [{-w | -W} hpath] [-z] [devopts]

devopts: [-L protlib] [-p {port | any}] [-P protocol]

--

largs: [=]fn | - |

 @lib[,bsz=sz][,cse={0|1|2}][,logfn=[=]fn]

sig: fifo|hup|rtmin|rtmin+1|rtmin+2|ttou|winch|xfsz

piargs: -+[tag] [args] [piargs]

Parameters

path An absolute file system path prefix. All requests will be restricted to files with

this prefix. You may specify any number of path prefixes. If no path is

specified, operations will be restricted to paths starting with /tmp.

Options

-c fn The name of the configuration file. If one is not specified, no configuration file

is processed.

Starting the Daemon Configuration

10 XRootD Configuration 30-March-2022

-l [=] fn

Specified how messages are to be handled. Options are:

fn Directs messages and any trace output to the indicated file, fn, possibly

qualified by the instance name (see the fencing section). If fn is a dash

(-), output is sent to standard error; the default.

=fn Same as fn but the fn is not qualified by the instance name, if any. This

allows log files to be handled in an arbitrary manual way. For more

information see the section on fencing.

@lib Directs messages to a plug-in that is defined in the shared library

specified by lib (see the section on log file plug-ins). Additional

comma-separated parameters may follow lib, as follows:

bsz=sz Specifies the size of the speed matching buffer. The

default is 64K. Messages are placed in the buffer and

then forwarded to the plug-in as time permits. A value of

0 disables speed matching and messages are handed off

to the plug-in as they occur. See the section on log file

plug-ins for more information. A positive value less than

8K is forced to be 8K. The maximum allowed in one

megabyte. The sz may be suffixed by k or m to indicate

kilobytes or megabyte, respectively.

cse={0|1|2} Specifies how standard error output should be handled:

0 Does not capture standard error output. All such

output is sent to the logfn destination, if specified, or

is otherwise lost. This is the default.

1 Captures standard error but only forwards it to the

logging plug-in if it starts with a standard time stamp.

This option may cause an infinite loop. Refer to the

logging plug-in section for more information.

2 Captures standard error output and forwards it to the

logging plug-in without inspection. Refer to the

logging plug-in section for more information.

logfn=[=]fn Specifies that messages are also to be routed to a local log

file. The parameter is identical to that described above.

To use standard error, specify a dash (-) for fn.

Configuration Starting the Daemon

30-March-2022 XRootD Configuration 11

-k num | sz{k|m|g} | sig

Keep no more than num old log files. If sz is specified, the number of log files

kept (excluding the current log file) is trimmed to not exceed sz bytes. The sz

must be suffixed by k, m, or g to indicate kilobytes, megabyte, or gigbytes,

respectively. If a sig value is specified (i.e. hup etc), then an external program

is expected to handle log file rotation (e.g. logrotate). Except for fifo, the

argument specifies signal that causes the daemon to close and re-open the log

file to allow rotation to occur. When fifo is specified, the daemon waits for

data to appear on a fifo whose path is identical to the log file path but whose

name is prefixed by a dot. Refer to the notes for manual rotation caveats.

Esoteric Options

{-a | -A} apath

Specifies the default administrative path and can be overridden by the

adminpath directive in the configuration file. When -A is specified group

write access is allowed (see the adminpath directive group option for details).

-b Runs the program in the background. You should also specify -l.

-d Turns on debugging. Warning! This severely impacts performance.

-h Displays help information.

-I {v4 | v6}

 Restricts the server’s internet address protocol. When v4 is specified, only

hosts with IPV4 addresses can connect or be connected to. When v6 is

specified, the default, hosts using IPV6 or IPV4 addresses can connect or be

connected to. This option is only useful for systems that have misbehaving

IPV6 network stacks. The default is established by the network interface

configuration on the machine at the time the program starts.

-n name

 Assigns name to the xrootd instance. By default, the xrootd instance is

unnamed. See the notes on how to use this option.

-R user

The user name or numeric uid of the user whose effective identity is to be

assumed. See the usage notes for more information. The specified user may

not have super-user privileges. This option may not be specified unless the

program is running as super-user.

Starting the Daemon Configuration

12 XRootD Configuration 30-March-2022

-s pfn Specifies the name of the file that is to hold the process id upon start-up.

-S site Specifies a 1- to 15-character site name that is to be included in monitoring

records. The name may only contain letters, digits and the symbols “_ -:.”; any

other characters are converted to a period.

{-w | -W} hpath

Specifies the default home path; i.e. the current working directory during

execution. If it is not specified on the command line, it can be specified by the

homepath directive in the configuration file. When -W is specified group read

access is allowed (see the homepath directive group option for details). The

hpath is extended by any specified instance name (i.e. –n option). The path is

created should it not exist.

-z provides microsecond resolution for log file message timestamps.

-+ provides a mechanism to pass command line arguments to plug-ins. See the

section “Passing Plug-In Command Line Arguments” for more information.

Developer Options

-L protlib

Specifies the shared library that holds the implementation of the default

protocol specified by the –P option.

-p port

The TCP port, or service name associated with a port, that xrootd is use for

new connections. The default is “xrootd” or port 1094, if the TCP service

xrootd cannot be found /etc/services.

-p any

Uses any available port.

-P protocol

The name of the default protocol. Use this option when the name of the

executable differs from the name of the default protocol. You may need to

specify the –L option as well. See the notes for more information.

Configuration Starting the Daemon

30-March-2022 XRootD Configuration 13

Defaults Arguments
–l - –I v6 –p xrootd –P executable_name /tmp

General Notes

1) For security purposes, only files in /tmp are allowed to be accessed unless

you specify otherwise. You may specify other paths either on the

command line or using the xrootd export configuration directive.

2) Do not prefix any export path with the oss localroot directive path, if any.

3) If a log file is specified without a signal -k option, the file is closed at

midnight, renamed to have a date suffix (i.e., fn.yyyymmdd) and possible

sequence number (i.e. fn.yyyymmdd.n), and a new log file is opened. When

a signal value is specified, log files are not automatically renamed at

midnight. Instead an external program must be used to properly rotate log

files. Make sure to choose a signal that is not in use by any plug-in. If

unsure, choose one of the obscure signal names and monitor for any odd

behavior. Otherwise, use the fifo option. Be aware that on some non-

Linux platforms the fifo file descriptor may leak.

4) When fifo is specified the fifo file name must not exists or exist as a fifo

file. A simple “echo x >> /path/.lfn” causes the logfile to close and reopen.

5) The sig names should not be prefixed by “sig” or “SIG”.

Notes on Esoteric Options

1) The default port service name, default protocol, and pidfile name is

normally determined by the prefix-name of the executable. The prefix-

name is defined to be all of the characters in the base filename (i.e., the

directory path removed) up to but not including the first dot in the name,

if any. If the name starts with a dot, the prefix-name is the complete base

filename.

2) The way the prefix-name is derived allows you to maintain several

versions of a particular xrd executable (e.g., xrootd and xrootd.debug)

without changing the intrinsic way default names (e.g, protocol) are

determined.

3) The built-in protocol name for cmsd is cms and for xrootd is xroot.

4) The –n option allows you to run multiple instances of the xrootd on the

same machine. See the next section on instances and fencing.

5) The –b option forces the program into the background. If –l is not

specified; all output messages are discarded.

6) When –b is specified, the program fails if it cannot write the pid file.

Starting the Daemon Configuration

14 XRootD Configuration 30-March-2022

7) The -R option allows the program to run under the super user’s account.

This is allowed because the effective user is set to specified user and the

effective group to user’s primary group. Thus, the program is not

effectively running as super-user. However, the real and saved user ids

may still be “root”, depending on how the program was started.

8) The -R option provides a minimal increase in security since it is possible

for a loaded protocol to switch back to super user mode. You should not

use the -R option unless absolutely necessary.

9) Warning: Command line options, except for –a and -s, over-ride

corresponding configuration file directives. For -s the pid file is written to

the desired location in addition to the location specified by the pidpath

directive.

Notes on Developer Options

1) You must use the –P option to set the default protocol name as well as

other related naming aspects (e.g., port service name) when the name of

the executable does not correspond to the name of the default protocol.

2) Use -p any for protocols that manage their own port numbers. This is the

case for redirection target xrootd/cmsd combinations. Only the initial

point of contact needs a well-known port number. All other connections

between clients and servers are routed using whatever port numbers are

currently in effect. This allows you to keep a simple configuration file for

servers and to run more than one server on the same machine without

worrying about conflicting port numbers.

Example
xrootd –c /opt/xrootd/xrootd.cf

Configuration Starting the Daemon

30-March-2022 XRootD Configuration 15

1.2.1 Multiple Instances and Automatic Fencing

You can run multiple instances of xrootd on the same physical machine. This is

useful when you want to overlay more than one cluster on top of a file system (e.g.

production and test). In order to prevent instances from interfering with each other,

you must provide each xrootd that is running on the same hardware a unique

instance name. One of the daemons need not have an instance name as it assumes

the name “anon” (i.e. anonymous).

Once an instance name is assigned to a daemon using the –n option, the system

automatically fences in the daemon so that it does not interfere with any other

xrootd processes running with it. Automatic fencing consists of threse actions:

 The instance name is suffixed to the adminpath to create a unique location for

temporary server files. For instance, if –n is not specified, xrootd creates

/tmp/.xrootd/admin as the path for the administrative interface. If “-n test” is

specified, xrootd creates /tmp/test/.xrootd/admin instead. Even the path

specified with the adminpath configuration directive is modified.

 The instance name is used to create a new directory in the current working

directory. The current working directory is changed to this newly created path.

So, if “/home/xrootd” is the current working directory and “-n test” is specified;

the current working directory becomes “/home/xrootd/test”. This allows core

files to be segregated by instance name.

 The instance name is automatically inserted into the log file path specified via the

-l command line directive to create a unique location for server log files. For

instance, if “–l /var/adm/xrootd/xrd.log” is specified along with “-n test”, xrootd

modifies the –l argument to be /var/adm/xrootd/test/xrd.log.

Automatic fencing of log files may, for some installations, run counter to the way log

files are commonly handled. You can disable fencing of log files by prefixing the log

file path by an equals sign. However, you are then responsible to make sure that

each instance uses a different log file path or name.

Much of this functionality has been subsumed into containerized frameworks.

However, the functionality described here is still supported in the cases where

containerization either does not provide the desired performance or is inconvenient

thus making host-based applications becomes an imperative.

Starting the Daemon Configuration

16 XRootD Configuration 30-March-2022

1.2.2 Passing Plug-In Command Line Arguments

You can pass command line arguments to various plug-ins that support the feature

using the -+ option. The option must be specified after all XRootD options and

parameters as plug-in arguments are stripped from the command line. For example,

xrootd [options] [path [path [. . .]] -+mypi arg1 arg2 -+urpi arg3

places a pointer to the vector containing “argv[0] arg1 arg2 0” into the internal

environment passed to the plug-in using the variable “mypi.argv**” and the count

in “mypi.argc” (i.e. 3). Similarly, “argv[0] arg3 0” are pointed to by “urpi.argv**”

with the count in “urpi.argc” (i.e. 2). If no tag is specified, the leading prefix is

missing (i.e. the variables are “.argv**” and “.argc”). Note that argv[0] is the actual

value of argv[0] (i.e. the executable name) passed to XRootD.

It is up to the plug-in to extract the appropriate arguments using a documented tag.

Tag values that start with “xrd” should not be used as these are reserved for plug-

ins normally distributed with the XRootD package.

Configuration Starting the Daemon

30-March-2022 XRootD Configuration 17

1.2.3 Log File Plug-Ins

XRootD allows you to specify a plug-in to handle messages that would otherwise be

sent to a regular file or standard error. You do this using the ‘@’ qualifier with the –l

option. Logging messages is a critical function in the server and any delay will

severely impact server performance. The default logging path is very efficient and

any plug-in placed in the path should be just as efficient. To help, a speed matching

buffer is used to minimize plug-in vagaries. However, if you choose to not use a

speed matching buffer (i.e. a bsz of zero for synchronous operation) then the plug-in

becomes the choke point in server performance.

You may also choose to capture standard error output using the cse parameter.

However, this option will result in an infinite loop if your logging plug-in writes to

standard error for any reason. This may be mitigated by specifying cse=1 which only

sends standard error output to the plug-in if it starts with a timestamp of the form

“yymmdd hh:mm:ss”. All debugging output starts with such a timestamp.

The details on how you write a log file plug-in is detailed in the XrdSysLogPI.hh

header file. It is important to realize that if you use the XrdSysLogger object to route

a message from your plug-in, an infinite loop will result. Additionally, one log file

plug-in is used for all XrdSysLogger instances.

Starting the Daemon Configuration

18 XRootD Configuration 30-March-2022

1.2.4 Files created by xrootd

The following directories and files are created by xrootd:

Default File Changed by Contents
<stderr> -l and -n command line

options

Informational and error

messages
/tmp//[name/].xrootd/ -n command line option

and the adminpath

directive

Directory for various server-

related files.

<cwd>//[name/]core[.pid] -n command line options Core file
/tmp/[name/]exec.pid pidpath and –n option Holds the process id
/tmp/exec.name.env adminpath and –n option Holds environmental

information (see next section).

1.2.4.1 Environmental Information File

The daemon writes environmental information in the directory specified by

adminpath directive, or its default. This information can be used to automatically

collect all relevant information about a daemon to facilitate automatic problem

resolution.

The environmental file is named “exec.name.env” where exec is the executable’s name

and name is the instance name (i.e. -n option) and anon if no instance name was

specified. The format of the information is shown below. When parsing this

information, you should not depend on the order shown below.

pid=pid&host=host&inst= inst &ver=ver&home=hpath &cfgfn=cfgfn&cwd=cwd&logfn=logfn

Parameters

cfgfn The configuration file used.

cwd The current working directory.

host The host name.

hpath The current working directory.

inst The instance name.

logfn The log file being used.

pid The process id.

ver The version string

These are the minimal elements. Additional elements may be added by specific

protocols.

Configuration Starting the Daemon

30-March-2022 XRootD Configuration 19

1.2.5 Exported Environment Variables

The following table shows the environment variable exported by xrootd. These may

be used by external programs and plug-ins, as needed. They should never be

modified.

XRD Variable Contents

XRDADMINPATH Is the directory for administrative files (i.e. all.adminpath)

XRDCONFIGFN The effective administrative path used for server management

files.

XRDDEBUG Set to one when the –d command line option is specified.

XRDHOST The current host’s DNS name.

XRDINSTANCE Is the string of the form “execname instance@hostname”. Where

execname is the executable’s name, instance is the name

specified via –n or anon if no instance name was specified,

and hostname is the current host’s DNS name.

XRDLOGDIR Is the directory where log files are written.

XRDNAME The name specified via –n or anon if no instance name was

specified.

XRDPROG The executable’s name.

XRDSITE The site name specified either via the –s command line option

or the all.sitename directive.

If the standard cms client plug-in is being used, the following additional

environment variables are exported.

CMS Variable Contents

XRDCMSMAN The space separated list of managers for this host each in

the form of “host:port”.

XRDCMSCLUSTERID The globally unique cluster identification for this host.

If the standard ofs plug-in is being used, the following additional environment

variables are exported.

OFS Variable Contents

XRDROLE The effective value specified on the all.role directive.

XRDTPC Is set when TPC (Third Party Copy) has been configured and

represents the version number of the protocol. If the first

character is a plus sign, authentication is required.

Starting the Daemon Configuration

20 XRootD Configuration 30-March-2022

If the standard oss plug-in is being used, the following additional environment

variables are exported.

OSS Variable Contents

XRDN2NLIB The path and name of the name-to plug-in, if specified via

the oss.namelib directive.

XRDRMTROOT The local root path specified by the oss.remoteroot directive.

XRDLCLROOT The local root path specified by the oss.localroot directive.

XRDOSSQUOTAFILE The name and location of the file handling disk space

quotas.

XRDOSSUSAGEFILE The name and location of the file handling disk space usage.

If the standard xrootd protocol plug-in is being used, the following additional

environment variables are exported.

XROOTD

Variable

Contents

XRDOFSLIB The path and name of the OFS plug-in specified by the

xrootd.fslib directive.

XRDMONRDR If monitoring is enabled, how often server identification

records are sent.

Configuration Starting the Daemon

30-March-2022 XRootD Configuration 21

2 Framework Directives by Category

This section provides a guide to xrd directives by category that is helpful when you

need to address a specific requirement.

2.1 Debugging

xrd.trace Specify which framework activities are to be traced.

2.2 Monitoring

xrd.report Specify which execution summary statistics are to be gathered and

where they are to be sent.

all.sitename Specify the name of the site to be used for monitoring purposes.

xrd.tcpmonlib Specify the plug-in to be used to collect and report specialized TCP

connection statistics.

2.3 Networking

xrd.network Specify network parameters such as DNS usage, interfaces, keep-

alive characteristics, and routing.

2.4 Operational Environment

all.adminpath Specifies the location of runtime files used for administrative

purposes.

xrd.homepath Specifies the location of the working directory during execution.

all.pidpath Specifies where the file containing the server’s process id should be

created.

2.5 Protocol support

xrd.port Specifies the default port number for incoming requests.

xrd.protocol Load additional protocols such as HTTP.

Starting the Daemon Configuration

22 XRootD Configuration 30-March-2022

2.6 Security and TLS

xrd.allow Restricts hosts that can connect to the server.

xrd.tls Specify the location of the server’s host certificate.

xrd.tlsca Specify the location of CA certificates and CRLs.

xrd.tlsciphers Specify allowable TLS ciphers.

2.7 Tuning

xrd.buffers Limit the amount of memory used for data buffers.

xrd.sched Specify execution parameters such as core file creation, default stack

size, and threading.

xrd.timeout Specify various connection handling timeout parameters

Configuration Directives

30-March-2022 XRootD Configuration 23

3 Common Framework Configuration Directives

3.1 adminpath

all.adminpath path [group]

Function

Specify the location of protocol-specific files for administrative purposes.

Parameters

path The absolute path to a directory that is to hold protocol-specific files. The

path should be no longer than 76-characters. See the notes for details.

group

Allows read/write group access to any named sockets created in the path. By

default, only the owner can use such sockets.

Default (see warning in the notes)
 /tmp

Notes

1) The adminpath directive allows you to specify the location of the local

TCP sockets used for the command-line administrative functions along

with special directories that are needed to handle protocol specific

features.

2) Use the -a or -A command line option to set the defaults for the

adminpath directive.

3) If -n is specified on the command line, a subdirectory corresponding to the

instance name (i.e., -n argument) is created in path, if one does not exist.

This becomes the new path. This allows fencing multiple daemons running

on the same node.

4) Warning: if idle /tmp directories and socket files are automatically deleted

by the system, you should specify a path other than /tmp. Be aware if

neither –a command line option nor the adminpath directive is specified,

the default becomes /tmp. External removal of files stored in the

adminpath may lead to server failure.

Configuration Directives

24 XRootD Configuration 30-March-2022

5) When specifying an adminpath; be cognizant that the program may be

containerized and the path may not be suitable for that environment.

Confer with your system administrators on what the suitable path should

be if the program will run in a container.

6) Local TCP socket names are limited to 108 characters. Up to 32 characters

are needed to define actual socket files; leaving 76 characters that may be

specified for the path.

7) The following steps are taken when creating a Unix named socket in path:

 The subdirectory .xrd is created in path and

o the cmsd daemon creates subdirectory .olb while

o the xrootd daemon creates subdirectory .xrootd in path.

 Mode bits for these directories are set to 0700 (rwx for owner). If the

directories already exist, the mode settings are reset to correspond the

to the adminpath directive.

 If group was specified, the mode setting is extended to 0770 (rwx for

owner and group).

 If the directories already exist, the mode settings are reset to

correspond the to the adminpath directive specification.

 Server, manager, and supervisor cmsd’s create stream sockets named

“olbd.admin”, “olbd.nimda”, and “olbd.super” in the .olb

subdirectory, respectively. These sockets are used for administrative

communication.

 Server and manager cmsd’s respectively create datagram socket

named “olbd.notes” and “olbd.seton” in the .olb subdirectory. These

sockets are used for external notifications.

 The xrootd daemon creates a Unix named socket with the name

“admin” in the .xrootd subdirectory.

8) The adminpath value is passed to all protocols so that they can create

their respective administrative files in path. However, for the cmsd only,

you may specify an exception by using the cms.adminpath directive to

create a completely different path for its files.

9) Refer to the section “Administrative Interface” for details on how to use

the Unix named socket created by various protocols and daemons.

1)

Example
 all.adminpath /var/adm/xrd group

Configuration Directives

30-March-2022 XRootD Configuration 25

3.1.1 Administrative Interface

The adminpath directive is used to construct the path where local TCP sockets,

called named sockets, are created. These sockets are used to communicate requests

and receive responses via the administrative interface. Unix domain sockets function

identically as INET domain sockets. The only differences are in how the socket is

created and the domain in which it operates. Care should also be given as to who

creates the socket. Following the next steps will allow the successful use of the

administrative interface.

1. Wait until the server creates that the socket file (e.g., “/tmp/.xrootd/admin” or

“/tmp/.olb/notes”). This can be done by polling for the socket using stat().

2. Create a stream socket using socket(PF_UNIX, SOCK_STREAM, 0)

3. Properly fill out the sockaddr_un structure with the path name of the socket

(e.g., “/tmp/.xrootd/admin”). This structure is normally defined in the

<sys/un.h> include file.

4. Issue a connect() call to connect the newly created socket to the path.

5. Use write() to issue requests to the server and read() to read responses.

The administrative protocol used for the socket interface is defined elsewhere.

Configuration Directives

26 XRootD Configuration 30-March-2022

3.2 allow

xrd.allow { host | netgroup } name

Function

Restrict the hosts that can connect to xrootd.

Parameters

host name

The DNS host name allowed to connect to xrootd. Substitute for name a host

name or IP address. A host name may contain a single asterisk anywhere in

the name. This lets you allow a range of hosts should the names follow a

regular pattern. . IP addresses may be specified in IPV4 format (i.e. “a.b.c.d”)

or in IPV6 format (i.e. “[x:x:x:x:x:x]”).

netgroup name

The NIS netgroup allowed to connect to xrootd. Substitute for name a valid

NIS netgroup. Only hosts that are members of the specified netgroup are

allowed to connect to xrootd.

Defaults

 None. If allow is not specified, any host is allowed to connect.

Notes

1) You may specify any number of hosts and netgroups. Any host matching

a specified name or is a member of a specified netgroup is allowed to

connect to xrootd.

2) Warning! Using hostname based security relies on the security of the DNS

server and the inability of other hosts spoofing and successfully using the

“allowed” IP addresses. The two security assumptions have severe

limitations.

Example
 xrd.allow host objyana*.slac.stanford.edu

Configuration Directives

30-March-2022 XRootD Configuration 27

3.3 homepath

xrd.homepath path [group]

Function

Specify the location of the current working directory.

Parameters

path The absolute path to a directory that is to be used as the working directory.

group

Allows read group access to path. B

Default

 Whatever is the directory on start-up.

Notes

1) Use the -w or -W command line option to set the home path. When the

home path is set on the command line, it cannot be overridden with the

homepath directive.

2) If -n is specified on the command line, a subdirectory corresponding to the

instance name (i.e., -n argument) is created in path, if one does not exist.

This becomes the new path. This allows fencing multiple daemons running

on the same node.

3) When specifying a homepath; be cognizant that the program may be

containerized and the path may not be suitable for that environment.

Confer with your system administrators on what the suitable path should

be if the program will run in a container.

Example
 all.homepath /var/run/xrd group

Configuration Directives

30-March-2022 XRootD Configuration 29

3.4 tls (required for TLS)

xrd.tls cpath [kpath] [options]

options: [[no]detail] [hsto to{h|m|s]

Function

Configure transport layer security (TLS).

Parameters

cpath Specifies the absolute path to the x509 certificate file to use for TLS. The

certificate must be in PEM format. The file may only be written by the owner

of the file.

kpath Specifies the absolute path to the certificate’s x509 private key file to use for

TLS. The key must be in PEM format. The file may only be read and written

by the owner of the file. If kpath is not specified then the certificate file must

contain the key.

[no]detail

 When detail is specified, detailed TLS trace back messages are printed along

with explanatory messages. The nodetail option suppresses the TLS trace

back messages. The default is nodetail. See the notes why this is so.

to Specifies the maximum amount of time a TLS handshake is allowed to take

before the connection is closed. The to value may be suffixed by h for hours,

m for minutes, or s for seconds, respectively; otherwise, the to value defaults

to seconds. There is no default time limit for the TLS handshake.

Defaults

TLS is not configured and cannot be used. See individual options for the

defaults should you configure TLS.

Notes

1) Normally, a host certificate should be used because the client can use it to

validate that it connected to the intended host.

Configuration Directives

30 XRootD Configuration 30-March-2022

2) If you specify the tls directive then you must specify the tlsca directive as

well.

3) Most TLS trace back messages do not provide any more information than

the companion explanatory messages and, as such, is only useful for

debugging purposes. This is why nodetail is the default. However, if you

enable TLS tracing using the xrd.trace directive, detail is enabled

regardless of what is specified.

Example
xrd.tls /etc/security/xrootd/hostcert.pem

Configuration Directives

30-March-2022 XRootD Configuration 31

3.5 tlsca (required for TLS)

xrd.tlsca noverify | {certdir | certfile} path [options]

options: [crlcheck {all | external | last}]

 [log {failure | off}] [[no]proxies]

 [refresh rint[h|m|s]] [verdepth vdn]

Function

Configure client certificate verification for transport layer security (TLS).

Parameters

noverify

Disables client certificate verification. All subsequent parameters, if any, are

ignored.

certdir path

Specifies the absolute path of the directory containing trusted Certificate

Authority certificates that can be used to verify client certificates. Each file in

the directory may only contain a single certificate in PEM format. Naming

conventions are those required by the version of OpenSSL being used. The

directory may only be written to by the owner of the directory.

certfile path

Specifies the absolute path to the file containing one or more trusted

Certificate Authority certificates that can be used to verify client certificates.

The certificates in the specified file are used first before an attempt is made to

find an appropriate certificate in certdir, if specified. The file must be in PEM

format. The file may only be written to by the owner of the file.

Configuration Directives

32 XRootD Configuration 30-March-2022

crlcheck

 Specifies the certificate revocation list (crl) is to be handled. Choose one of the

following:

 all - apply crl checking to the complete certificate chain.

 external - crl application is handled by an external plug-in (the default).

 last - apply crl checking only to the last certificate in the chain.

log Specifies logging requirements. Logging messages are written to the log file.

Choose one of the following:

 failure - log failed verifications (the default).

 off - verification failures are not to be logged.

vdn Specifies the verification depth. Should the client present a certificate chain,

up to the last vdn certificates are verified. Specify a value between 1 and 256,

inclusive. The default is 9.

rint Specifies the refresh interval. Suffix the value with h for hours, m for

minutes, or s for seconds (the default). The default is 8h (eight hours).

Defaults
xrd.tlsca crlcheck external log failure proxies refresh 8h verdepth 9

Notes

1) You may specify both a directory and a file. The certificates in the certfile

will be searched before any certificates in certdir.

2) If all the loaded protocols use strong authentication (e.g. Kerberos, GSI, or

SSS) client certificate verification is not necessary as the client will be

verified using a strong authentication mechanism and the client’s

certificate will only be used to establish a TLS connection.

3) Certain protocols require certificate verification (e.g. HTTPS). If you

enable one of these protocols you should enable verification overall to

avoid specifying protocol specific directives that duplicate ones that could

be specified using the tlsca directive.

4) In the absence of strong authentication, you should always verify client

certificates. Generally, you should always verify client certificates. This is

why the directive requires that you make an explicit choice.

5) All of the certificates in the directory, as well as the file, must in a format

that is recognized by the version of OpenSSL being used.

Configuration Directives

30-March-2022 XRootD Configuration 33

6) If you use a certdir be aware that OpenSSL requires that the c_rehash

utility be run after the certificates in the directory are updated. This

introduces a race condition between refreshes and updates to the directory

and may produce verification failures should a refresh occur while the

directory is being updated. You can avoid this problem by making sure

that changes to the directory are visibly done in an atomic fashion.

Example
xrd.tlsca certfile /etc/security/xrootd/cacerts.pem

Configuration Directives

30-March-2022 XRootD Configuration 35

4 Esoteric Framework Configuration Directives

4.1 buffers

xrd.buffers memsz[k | m | g] [rint[m | s | h]]

Function

Limits the amount of memory to be used to data buffers.

Parameters

memsz

The maximum number of bytes to be used for data buffers. The memsz can be

suffixed by k, m, or g to indicate kilo-, mega-, or giga-bytes; respectively. The

default is to use up to 12.5% (one-eight) of the configured memory of the

machine.

rint The interval between buffer pool readjustments. Specify a number, optionally

suffixed by m for minutes, s for seconds (the default), or h for hours. The

default is every 20 minutes.

Defaults
xrd.buffers memsz 20m

Notes

1) The allotted memory for buffers is independent of any other memory

allotment to the daemon.

2) Data buffers in the pool are periodically readjusted to reflect the actual

working needs of the daemon. The rint interval controls how frequently

this adjustment occurs. The default value is usually the best value.

Example
 xrd.buffers 512M

Configuration Directives

30-March-2022 XRootD Configuration 37

4.2 network

xrd.network [buffsz blen[k | m | g]] [cache sec]

 [[no]dnr] [[no]dyndns]

 [kaparms idle[,itvl[,cnt]] [[no]keepalive]

 [routes {split|common|local} [use if1[,if2]]]

 [[no]rpipa] [tls]

Function

Specify network parameters.

Parameters

buffsz blen

The buffer size to be set for each connected socket. The blen can be suffixed by

k, m, or g to indicate kilo-, mega-, or giga-bytes; respectively. The default is

determined by the operating system.

cache sec

The maximum number of seconds that an address to hostname translation

can be locally cached for future use. See the notes on its interaction with

dyndns. The sec can be suffixed by s, m, h or d to indicate seconds, minutes,

or hours, or days; respectively. The default is 3 hours.

dnr Uses Domain Name Resolution to convert IP addresses to host name for

connecting clients. Host names are displayed in various messages.

nodnr Avoids using Domain Name Resolution to convert IP addresses to host name

for connecting clients. Client IP addresses are displayed in various messages.

Configuration Directives

38 XRootD Configuration 30-March-2022

dyndns

The network uses a Dynamic DNS for name resolution. See the section on

Dynamic DNS for information on when you should specify this option. See

the notes on its interaction with cache.

nodyndns

The network uses a standard DNS whose name entries are stable. This is the

default.

kaparms idle[,itvl[,cnt]

Specifies TCP keepalive parameters. The kaparms option is only effective for

Linux. Up to three parameters may be specified. Omitted parameters, as well

as parameter values of zero, use the system default. The parameters are:

idle The time the connection needs to remain idle before TCP starts

sending keepalive probes. The idle value may be optionally

suffixed by m for minutes, s for seconds (the default), or h for

hours.

itvl The time between individual keepalive probes. The itvl value may

be optionally suffixed by m for minutes, s for seconds (the default),

or h for hours.

cnt The maximum number of keepalive probes TCP should send

before dropping the connection.

keepalive

Uses the operating system’s keep-alive mechanism to determine whether or

not a client is still connected to the daemon. This is the default. See the usage

notes for other ways of simulating keepalive.

nokeepalive

Does not use the operating system’s keep-alive mechanism to determine

whether or not a client is still connected to the daemon.

routes

Specifies that a dual network exists and how public and private addresses are

routed within a site. Select one of the below optionally followed by the use

keyword and up to two interface names (i.e. if1 and optionally if2

immediately preceded by a comma; use ifconfig to display interfaces and

their names):

split Two separate networks exist. Clients connecting with a private

address can only be redirected to a server’s private address. Clients

Configuration Directives

30-March-2022 XRootD Configuration 39

connecting with a public address can only be redirected to a

server’s public address. If clients can use both types of addresses,

all servers must be dual homed with a public and private address.

Typically, you must specify the interfaces you are using.

common Two common networks exist. Clients connecting with a private

address are preferentially redirected to a server’s private address

but may be redirected to a server’s public address if need be.

However, clients connecting with a public address can only be

redirected to a server’s public address. All servers must have at

least a public address. If the machine is dual-homed you must

specify the interfaces you are using.

local Two cross-routable networks exist. Clients connecting with a

private address are preferentially redirected to a server’s private

address but may be redirected to a server’s public address if need

be. Clients connecting with a public address are preferentially

redirected to a server’s public address but may be redirected to a

server’s private address if need be. This is the default mode of

operation in order to be compatible with previous releases. If the

machine is dual-homed it is advisable to specify the interfaces you

are using for predictable access.

 Warning, such a network configuration is not suitable for external

access and a proxy server must be used for out of domain clients.

rpipa

Tries to resolve private IP addresses to host names. See the section on

resolving private IP address for more information.

norpipa

Does not resolve private IP addresses to host names. This is the default.

tls Indicates that the specifications apply to the Transport Layer Security port.

Defaults
xrd.network cache 3h dnr norpipa

Notes

1) For systems that support TCP buffer auto-tuning as a manual option,

specify a buffsz blen of 0 to turn on auto-tuning.

Configuration Directives

40 XRootD Configuration 30-March-2022

2) Setting the buffer size to a large value may cause the operating system’s

default value to be used. You should determine the maximum valid value

for your system before specifying values greater that 64k.

3) Normally, the best performance is obtained by using TCP buffer auto-

tuning.

4) Even if you specific nodnr, domain Resolution may be forced on if you

specify an allow directive using a host name or host name fragment or

authorize file access via host names, netgroups, or domain names.

Resolution is still optimized by caching the results for future use.

5) The daemon’s internal timeout mechanism can be used to discover

unconnected clients instead of TCP keepalive and may be more

responsive. See the timeout directive. You should avoid using both

mechanisms at the same time.

6) For aggressive keepalive processing you can use “kaparms 300,10,6”.

7) By default, public-private networking support is disabled. You must

specify the routes option to enable it. If you do specify for one server you

must specify for all nodes in your cluster (i.e. servers and redirectors).

Failure to do so may result in unreachable nodes..

8) If the supplied information is inconsistent with the server network

settings, warning messages are printed and the public-private network

support may be turned off for that server. You should verify that your

specification is consistent with the server’s networking configuration.

9) Interface names are arbitrary but usually are of the form enx, ethx, etc.

One interface must be assigned a public address and the other the private

address. This mechanism works best when all of the servers in a cluster

use the same interface naming conventions; though the address

assignments may differ. If this is not the case, you will need to use the if-

else-fi configuration syntax to special case particular nodes.

10) Dual public/private network are fully supported in Linux, MacOS, and in

Solaris 11.

11) IP address caching is generally incompatible with a dynamic DNS. When

dyndns is specified but no cache option has been specified, the cache

timeout is set to zero. This effectively turns off IP address caching.

Example
 xrd.network nokeepalive nodnr

 xrd.network tls buffsz 512k

Configuration Directives

30-March-2022 XRootD Configuration 41

4.2.1 Dual Public/Private Network Guidelines

Before you configure a dual public/private network, determine if such a network is

actually necessary. Administering dual networks is difficult and problem resolution

rather onerous. Typical reasons and alternatives to running a dual network are:

 Conserving IPV4 addressees: consider using IPV6, which does not suffer from

this problem.

 Performance: if private addresses are routed along with public addresses over

the same networking hardware then the switch becomes the bottleneck and

performance improvements are moot.

 Security: if you desire to restrict certain kinds of access you may be able to

achieve the same result using router and switch settings (e.g. file walls,

routing restrictions, etc) thus avoiding a dual network.

If you still wish to run a dual network, you should use the following guidelines to

avoid access surprises and mysterious performance issues.

 Never register private addresses in a publicly accessible DNS server. This

exposes your private network configuration and is considered bad practice.

Private addresses should only be registered in a private DNS or zone

registered to prevent external leakage.

 Never register a server’s private and public address under a single host name

unless both addresses have equal connectivity. While this practice works for

simple applications, complex applications like XRootD and Proof attempt to

use all addresses assigned to a particular host name. If connectivity is

unequal, performance issues and connection failures are likely to occur.

 Never cluster servers with only a public address with servers that only have a

private address if their name spaces overlap. While this may work for certain

network routing topologies, it invariably introduces inconsistencies.

 Carefully review the routes option on the xrd.network directive to make sure

your network routing topology and interfaces are correctly stated.

Configuration Directives

42 XRootD Configuration 30-March-2022

4.2.2 Resolving Private IP Addresses

By default, private IP addresses are not resolved to host names. This is commonly

accepted practice to avoid DNS timeouts as private addresses are usually not

registered in DNS. However, some installations may opt to register such addresses

in either a private DNS or in a zoned public DNS. This actually may be necessary in

cloud deployments where nodes within the cloud receive private addresses and a

NAT box is installed to provide outside access. In such cases, there is usually a 1-to1

mapping between a public address (e.g. IPv6) to a corresponding private address

(e.g. IPv4). The public address is registered in a public DNS while the private

address is registered in a private DNS within the cloud. Both addresses are

registered with the same host name. However, to avoid leaking private addresses

you must specify the xrd.network rpipa option so that only host names are returned

and not actual addresses. This allows clients on the public network to accesses nodes

in the private network using the NAT box. Nodes in the private network also

receive host names but since these names are registered within the private network,

proper address resolution occurs.

4.2.3 Dynamic DNS

The dyndns option specifies that a Dynamic DNS is being used for the network.

This is typically the case for containerized cloud deployments (private or public)

managed by an orchestration scheme (e.g. Kubernetes). In such schemes, when a

container starts with an arbitrary local IP address, its host name and address are

entered into a local DNS. When the container stops, the entry is removed. Even on a

container restart, the entry may be removed between the time the container stops

and the time it restarts with a new IP address. This becomes a problem for servers

expecting to contact specific services when those services have not yet been started

or are being restarted. In the XRootD framework, cluster management services that

supervisor and data servers rely on expect those services to be permanently

registered in DNS; albeit with arbitrary non-permanent IP addresses.

The dyndns option notifies all nodes in an XRootD cluster using the network that

DNS entries may come and go and resolution of IP addresses needs to be done at

the time of contact not during initialization. Failure to specify the dyndns option

when a Dynamic DNS is actually being used inevitably leads to random failures.

Of course, you may be able to avoid using a Dynamic DNS if you opt for host

networking, at least for management services. However, many times that is not an

option and when allowed severely limits orchestration choices.

Configuration Directives

30-March-2022 XRootD Configuration 43

4.3 pidpath

all.pidpath path

Function

Specify the location where the process id file (i.e. pid file) is to be written.

Parameters

path The path to be used to create the file where the daemon’s process id is stored.

Defaults

The process id file is written into /tmp.

Notes

1) If -n is specified on the command line, a subdirectory corresponding to the

instance name (i.e., -n argument) is created in path, if one does not exist.

This becomes the new path. This allows fencing multiple daemons running

on the same node.

2) The -s command line option may be used to specify the path and filename

to be used for the pid file.

3) The name of the pid file corresponds to the executable name suffixed by

“.pid”.

Example
 all.pidpath /var/run/scalla

Configuration Directives

30-March-2022 XRootD Configuration 45

4.4 port

xrd.port [tls] {pnum | any} [if conds]

Function

Designate the port number to use for incoming requests.

Parameters

tls Sets the preferred TLS-only (Transport Layer Security) port number.

Otherwise, the default port number is set. See the usage notes on how the

default is determined and the caveats when using the tls option.

pnum The TCP port number or the TCP service name associated with a port in

/etc/services file that the daemon should use for incoming requests. See the

usage notes on how the default is determined.

any Specifies that any available TCP port number may be used use for incoming

requests. See the usage notes on how the default is determined.

conds The conditions that must exist for this directive to apply. Refer to the

description of the “if” directive on how to specify conds.

Defaults

 See the usage notes.

Notes

1) The default port number is determined using the following rules:

 The protocol specified port when the protocol is loaded.

 The port specified on the protocol directive entry.

 The port specified on the command line using –p.

 Any available port number if -p any was specified on the command

line.

 The port associated with the service name that corresponds to the

name of the program used to start the daemon (e.g., xrootd).

 The port value of 1094.

Configuration Directives

46 XRootD Configuration 30-March-2022

2) The tls port number need only be specified if you wish to have a port that

can only communicate using TLS at the outset. A client may discover this

port using the kXR_query request with the tlsport as an argument. If not

specified or used by a protocol, no TLS-only port is created.

3) Not all protocols support a TLS-only port. For instance, the xroot and

xroots protocols negotiate TLS with the client and must first communicate

without using TLS. So, TLS-only port cannot be used. The http protocol

can use such a port but only for https connections. However, TLS-only

port prevents it redirecting a TLS connection to a non-TLS connection.

4) When running clustered systems, you can keep a single configuration file

that is applicable to all types of servers, as follows:

 always specify “xrd.port any” in the configuration file, and

 use the if modifier to identify the top-most servers (i.e., the initial point

of contact also known as redirectors) and assign them fixed port

numbers immediately following the “xrd.port any” directive.

4) Using the steps outlined above, the initial point of contact will have a well-

known port number. While all other servers will choose random port

numbers, the ports are communicated to the cluster manager which then

automatically manages the port numbers while redirecting clients.

Example
xrd.port xrdnew

Configuration Directives

30-March-2022 XRootD Configuration 47

4.5 protocol

xrd.protocol [tls] name[:port] {+port | {lib | *} [parms]}

Function

Configure a protocol that xrd is to use for incoming requests.

Parameters

tls Indicates that any connection to the port must communicate using TLS at the

outset. Not all protocols support this option. See the notes for caveats.

name The name of the protocol you wish to configure.

port The port number the protocol is to use for incoming requests. Specify a

number, the name of a TCP service, or the word any. If port is not specified,

the preferred port is used (see the xrd.port directive).

+port Adds the specified port to the list of port number that the protocol may

receive connections. The protocol name must have been previously defined.

You may not omit the port specification when using this parameter. If the port

already is associated with the protocol, only the tls designation is updated.

lib The path to the shared library that contains the code the implements the

protocol. If lib is an asterisk, the protocol refers to the built-in or the command

line assigned protocol. Any pre-existing protocol definition with the same

name is completely replaced by this definition.

parms Parameters to be passed to the protocol at load time.

Defaults

Not applicable.

Notes

1) The daemon expects that only one protocol is built-in. The name of this

protocol must correspond to the name of the program implementing the

daemon (e.g., xrootd implies xroot protocol). The built-in protocol may be

overridden by the -P and -L command line options.

Configuration Directives

48 XRootD Configuration 30-March-2022

2) The built-in or assigned protocol is always loaded first followed by any

additional protocols in the order they appear in the configuration file.

3) The tls option is meant to be used for protocols that require TLS but

cannot configure it themselves. The xroot protocol is incompatible with

this option as it negotiates the use of TLS using a non-TLS connection.

The http protocol can work but only for https connections. However,

enforcing TLS at the outset disables its ability to redirect a TLS connection

to a non-TLS connection.

4) Most protocols can share the same port number because the framework

picks the protocol that is compatible with the incoming data. For instance,

the xroot and http protocols can both use the same port number. The

framework automatically enables the xroot base port for http use. This

makes it convenient in a clustered environment when an http connection

is redirected to an xroot port number.

5) When the specified protocol name matches a previously declared protocol

the port, lib, and parms specifications replace those in the previously

specified directive. If the port is missing, the protocol uses its default port

number. If the parms are missing then any existing parms are removed

from the previous specification.

6) Additional protocols are dynamically loaded from the indicated lib.

7) A port of any assigns an arbitrary port number to the protocol.

8) Be aware that a protocol may choose its own port irrespective of what is

actually specified. While current protocols respect the configured

specification, future ones may not.

9) Only those protocols bound to a specific port are matched against

incoming connections on that port. The daemon attempts to match each

such protocol with an incoming connection on the associated port in the

order that the protocols are specified. The built-in protocol is always tried

first, if applicable.

10) Load-time parameters are specific to each protocol. Refer to the protocol

requirements for details.

11) The cms and xroot protocols do not have any load-time parameters.

12) Up to eight different protocols may be specified. Each protocol may be

assigned up to 8 different ports.

Example
xrd.protocol http:8000 libXrdHttp.so

xrd.protocol http:8080 +port

Configuration Directives

30-March-2022 XRootD Configuration 49

4.6 report

xrd.report dest1[,dest2] [every rsec] [-]option

option: all | buff | info | link | poll | process |

 prot[ocols] | sched | sgen | sync | syncwp

 [[-]option]

Function

Specify execution tracing options.

Parameters

dest1 is a host:port or a UDP named local socket where reports are to be sent.

Reports are always sent as a single UDP message.

dest2 is a secondary destination and must differ from dest1. The same report is

delivered to dest2 and dest1.

rsec determines how often reports are sent. Specify a number, optionally suffixed

by m for minutes, s for seconds (the default), or h for hours. The default is

every 10 minutes.

option Specifies the reporting level. One or more options may be specified. The

specifications are cumulative and processed left to right. Each option may be

optionally prefixed by a minus sign to turn off the setting. The following

options produce reports on:

all selects all possible reports

buff I/O buffer activity

link connection and socket I/O activity

poll socket activity other than I/O

process process resources

protocols protocol specific information

sched scheduling and thread activity

sgen statistics generation

sync synchronizes data for completeness (see the notes)

syncwp synchronizes data only when practically possible

Configuration Directives

50 XRootD Configuration 30-March-2022

Defaults

Reporting is disabled.

Notes

1) Report messages are encoded in XML format. Refer to the xrootd protocol

specification on the actual format and embedded information; as

described under the response format for the kXR_QStats option of the

kXR_query request.

2) By default, statistical values are obtained without data access

synchronization. This may occasionally produce incomplete or inaccurate

values. However, because information is collected asynchronously this

has little impact on the server.

3) If absolute accuracy is required, you should specify the sync option. Be

aware that reporting may require a significant amount of elapsed time

while the server synchronizes its activities in order to produce accurate

and consistent data.

4) If absolute accuracy is desired but not required, you should specify the

syncwp option. The server synchronizes its activities only when possible.

If the server is too active, an asynchronous report is done. The sgen report

segment provides information on whether the report was synchronous or

not and how much time it took to generate.

5) For scalability reasons, you should feed all UDP messages to one or more

collectors whose sole function is to multiplex the UDP message streams

into a single buffered serial stream. Generally, attempting to do more in a

UDP message receiver substantially increases the chance for lost UDP

messages.

6) A UDP message multiplexor and XML parser, mpxstats, is available as

part of the reference XRootD distribution. Refer to the “Monitoring”

reference for details.

Example
xrd.report myhost:1234 every 15m all -poll

Configuration Directives

30-March-2022 XRootD Configuration 51

4.7 sched

xrd.sched parms

parms: [avlt avlt] [core {asis | max | off}]

 [idle idle] [maxt maxt] [mint mint] [stksz size]

Function

Specify when threads are created, how many can be created, and when they

should be destroyed.

Parameters

avlt avlt

The number of threads that must always be available to service a request.

These threads are never bound to any connection. Excess threads above this

quantity will be allowed to bind with a socket until either the socket becomes

idle or the number of available threads falls under avlt. The default is one half

of the mint value.

core {assis | max | off}

Sets the limit for core file production. Choices are

assis - leave the current setting alone.

max - allow core files up the hard limit maximum (the default).

off - turn off core file production.

idle idle

The interval between checks for underused threads. Underused threads in

excess of the mint value are terminated. Specify a number, optionally suffixed

by m for minutes, s for seconds (the default), or h for hours. The default is

every 13 minutes (i.e., 13m). Specifying a value of zero prevents threads from

being terminated even if they are idle.

maxt maxt

The maximum number of threads that may be created to service requests. The

number of threads will dynamically vary between mint and maxt.

Directives Configuration

52 XRootD Configuration 30-March-2022

mint mint

The minimum number of threads that must exist to handle requests. Once

this number has been created, it is never reduced.

stksz size

The default thread stack size. Specify the number of bytes, optionally suffixed

by k for kilobytes or m for megabytes. The default is controlled by the target

operating system.

Defaults
 xrd.sched mint 8 maxt 2048 avlt 512 idle 780

Notes

1) The mint-number of threads are eventually created.

2) The stack size is controlled by the target operating system used to create

xrootd. For instance, in Solaris when sizeof(long) is 4 (indicating a 32-bit

architecture), a 1M stack size is used. When sizeof(long) is 8 (indicating a

64-bit architecture or an LP64 data model) a 2M stack size is used. In

Linux, the stack grows, as needed, to a maximum of 2M.

3) You should periodically review whether or not you have sufficient

number of threads. The daemon prints a warning message the first time

the maxt value is reached and more threads are needed.

4) If the daemon indicates that the thread limit was reached but less than

maxt threads were created; then the target operating system maximum has

been reached. This now becomes the new maxt value.

5) Warning, you should not change the thread parameters unless there is an

overpowering reason to do so. The system is optimized for having many

thread readily available. Constraining the number of threads may yield

random failures that are hard to explain.

Example
xrd.sched mint 10 maxt 100 avlt 20

Configuration Directives

30-March-2022 XRootD Configuration 53

4.8 sitename

all.sitename sname

Function

Specify the site name to be included in monitoring records.

Parameters

 sname

The 1- to 63-character name of the site. The name may include letters, digits,

and the symbols “_-:.”. Other symbols are converted to a period. If the name

is longer than 63 characters it is truncated to 63 characters.

Defaults
 None.

Notes

1) The -S command line option overrides the sitename directive.

2) The first sitename directive takes precedence over any subsequent

sitename directives.

Example

all.sitename slac

Configuration Directives

30-March-2022 XRootD Configuration 55

4.9 tcpmonlib

xrd.tcpmonlib [++] path [parms]

Function

Specify the location of the TCP connection statistics monitoring plug-in.

Parameters

++ The specified plug-in should stack on top of the existing plug-in or default. A

stacked plug-in cannot be overridden by a subsequent directive.

path The absolute path to the shared library that contains an implementation of the

TCP connection statistics monitor.

parms Optional parameters to be passed to the plug-in object creation function.

Defaults

None.

Notes

1) The TCP connection monitor plug-in interface is defined in the

XrdTcpMonPin.hh include file. Refer to this file on how to create a

custom monitoring plug-in.

2) You must specify the tcpmon option in the xrootd.monitor directive in

order to enable the TCP connection monitoring.

3) The plug-in is called just before the TCP socket to a client is closed.

Example
 ofs.authlib /opt/xrootd/lib/libAuth.so

Configuration Directives

30-March-2022 XRootD Configuration 57

4.10 timeout

xrd.timeout parms

parms: [hail hlto[h | m | s]] [idle idto[h | m | s]]

 [kill klto[h | m | s]] [read rdto[h | m | s]]

Function

Specify timeout parameters.

Parameters

hail hlto

The maximum number of seconds to wait for data to arrive after a connection

is accepted. Specify a number optionally suffixed by h for hours, m for

minutes, or s for seconds, the default.

idle idto

The number of seconds a connection may remain idle before it is closed.

Specify a number optionally suffixed by h for hours, m for minutes, or s for

seconds, the default. A value of 0 disables idle timeout processing.

kill klto

The number of seconds to wait for an “end session” request to complete.

Specify a number optionally suffixed by h for hours, m for minutes, or s for

seconds, the default.

read rdto

The number of seconds a read may wait for data before it is either terminated

or rescheduled. Specify a number optionally suffixed by h for hours, m for

minutes, or s for seconds, the default.

Defaults
xrd.timeout hail 30 idle 0 kill 3 read 5

Directives Configuration

58 XRootD Configuration 30-March-2022

Notes

1) The idle timeout prevents accumulation of dead connections which may

happen when a client host machine crashes.

2) Currently, idle timeouts are disabled. You may enable them by specifying

an idto value greater than zero.

3) Forced closure of connections is safe if the protocol supports dynamic

reconnection, as the xroot protocol does.

4) The read timeout forces a link to be closed should the initial protocol

identification data not arrive within the timeout interval. After which,

connections that do not send all of their data in the indicated period are

simply rescheduled to the background.

5) Avoid setting short idle timeouts (e.g. less than 2 minutes). The

framework oversamples timeout conditions so that it can accurately meet

the specified value. Shorter timeouts require a higher sampling rate which

increases overhead.

Example
xrd.timeout idle 120m read 10

Configuration Directives

30-March-2022 XRootD Configuration 59

4.11 tlsciphers

xrd.tlsciphers ciphers

Function

Specify the allowed ciphers for transport layer security (TLS).

Parameters

ciphers

A list of colon separated ciphers that are allowed to be used.

Defaults

For OpenSSL versions greater than 1.0.2 the ciphers recommended by

mozilla.org version 5.4 guidelines are used. These are strict ciphers. For older

OpenSSL versions, generic ciphers are used for compatibility reasons.

Notes

1) The tls.ciphers directive is provided in cases where a default cipher has

been shown to be insecure and should be removed. In this case, you need

to specify all of the ciphers less the one you wish to eliminate.

Example
xrd.tlsciphers ALL:!LOW:!EXP:!MD5:!MD2

Directives Configuration

60 XRootD Configuration 30-March-2022

4.12 trace

xrd.trace [-]option

option: {all | conn | debug | mem | net | none | off |

 poll | protocol | sched | tls | tlsctx | tlsio |

 tlssok} [[-]option]

Function

Specify execution tracing options.

Parameters

option Specifies the tracing level. One or more options may be specified. The

specifications are cumulative and processed left to right. Each option may be

optionally prefixed by a minus sign to turn off the setting. Valid options are:

all selects all possible trace levels

conn traces connection activity

debug traces internal activities for debugging purposes

mem traces memory management functions

net traces network management functions

none traces nothing

off a synonym for NONE

poll traces I/O interrupt polling activities

protocol traces protocol activity (see the notes)

sched traces scheduling functions

tls a synonym for the combination tlsctx and tlssok

tlxctx traces TLS context activities

tlsio traces TLS I/O activities

tlssok traces TLS socket activities

Defaults

Tracing is disabled.

Configuration Directives

30-March-2022 XRootD Configuration 61

Notes

1) All tracing is forcibly enabled when the daemon is invoked with the –d

option.

2) All previous trace settings are discarded when none or off is encountered.

3) The protocol trace option is passed along to the all loaded protocols that

may or may not respect the option or may have their own options.

Example
xrd.trace all -debug

Configuration Common xrootd Directives

30-March-2022 XRootD Configuration 63

5 xrootd Directives by Category

5.1 Data Access

all.export Specify the file system paths that may be accessed.

xrootd.fslib Specify the file system plug-in to be used for data access.

xrootd.redirect Specify client redirection by type of request, access path, and

possible errors during access.

5.2 Data Integrity

xrootd.chksum Enable file checksum calculation.

5.3 Debugging

xrootd.diglib Enable interactive remote debugging.

xrootd.trace Specify execution tracing options.

5.4 Monitoring

xrootd.mongstream Specify custom g-stream parameters.

xrootd.monitor Specify which statistics are to be collected and where they are to

be sent.

xrootd.pmark Specify packet marking firefly parameters.

5.5 Prepare Processing

xrootd.prep Specify how prepare requests tracking should be handled.

5.6 Security

xrootd.seclib Specify the location of the security interface layer.

xrootd.log Specify which events are to be logged.

xrootd.tls Specify TLS requirements by request category.

5.7 Tuning

xrootd.async Specify asynchronous data processing features and limits.

xrootd.bindif Specific alternate interfaces that should be used for data.

xrootd.fsoverload Specify how file system overloads are to be handled.

Common xrootd Directives Configuration

64 XRootD Configuration 30-March-2022

xrootd.tlsreuse Specify TLS session cache characteristics.

Configuration Common xrootd Directives

30-March-2022 XRootD Configuration 65

6 Common xrootd Configuration Directives

6.1 export

all.export {path | *[?]} [[no]lock] [oss_options]

Function

Specify a valid path prefix for file requests.

Parameters

path An absolute path prefix for valid file requests. Only files starting with this

prefix are allowed in requests.

* Allow arbitrary object identifiers (i.e. names that do not start with a slash).

The names are not inspected in any way and passed as is to the file system

plug-in.

*? Allow arbitrary object identifiers (i.e. names that do not start with a slash).

Inspected the names for CGI information and, if present, separate it from the

object identifier (i.e. characters before the question mark) before passing the

object name and CGI information to the file system plug-in.

lock Uses standard xroot protection against multiple writers. This is the default.

nolock

Does not protect against multiple writers.

oss_options

Optional oss options that affect how the path is processed by the storage

system and cluster service. Refer to the “Open File System & Open Storage

System Configuration Reference” and the “Clustering Configuration

Reference”.

Defaults
xrootd.export /tmp lock

Common xrootd Directives Configuration

66 XRootD Configuration 30-March-2022

Notes

1) For security purposes, only files in /tmp are allowed to be accessed unless

you specify otherwise. You may specify valid paths either on the

command line or using the export configuration directive.

2) Do not prefix path with the oss localroot directive path, if any.

3) By default, a file may be opened by a single writer with no readers or

multiple readers without any writer. If an external locking mechanism is

used or no locking mechanism is needed; specify the nolock option to

disable the default.

4) The [no]lock option must appear before any oss options.

5) The underlying file system plug-in as well as the storage system plug-in

must support object identifiers in order to use the * or *? export. The

default file system plug-in will pass the object identifier to the storage

system plug-in for the common set of file operations. However, the default

storage system plug-in will not load if object identifiers are being

exported.

6) Object identifiers exportation is meant to support object store plug-ins

such as the Ceph block storage plug-in.

Example
 xrootd.export /store

Configuration Common xrootd Directives

30-March-2022 XRootD Configuration 67

6.2 seclib

xrootd.seclib {default | path}

Function

Specify the location of the security interface layer.

Parameters

default

Uses the default security plug-in the security interface.

path The absolute path to the shared library that contains an implementation of the

Security (sec) interface that xrootd is to use for strong authentication(e.g.,

Kerberos, GSI, etc).

Defaults

Strong authentication is disabled unless seclib is specified.

Notes

1) The sec interface allows you to provide an arbitrary authentication

implementation (e.g., Kerberos, GSI, etc).

2) A sec implementation requires that compatible interface libraries be used

on the server and client sides of the connection.

3) Refer to XrdSecEntity.hh and XrdSecInterface.hh for guideline on how to

write a sec interface.

4) It is up to the sfs implementation to use authentication information to

restrict access to files.

5) The provided ofs implementation can use authentication information for

access control purposes.

6) The default sfs implementation does not provide any access control.

Example

 xrootd.seclib /opt/xrootd/lib/libosec.so

Configuration Esoteric xrootd Directives

30-March-2022 XRootD Configuration 69

7 Esoteric xrootd Configuration Directives

7.1 async

xrootd.async parms

parms: [force] [limit aiorpc] [maxsegs smax]

 [maxstalls mstall] [maxtot slim]

 [minsize reqsz[k | m | g]] [minsfsz sfsz[k | m | g]]

 [nocache] [nosf] [off] [segsize segsz[k | m | g]]

 [syncw] [timeout tmo]

Function

Specify how asynchronous I/O is to be handled.

Parameters

force Uses asynchronous I/O for all requests, even if the client did not ask for

asynchronous handling.

limit clim

The maximum allowed number of outstanding asynchronous requests per

client connection. Any additional requests past clim are synchronously

handled. The default is eight (8).

maxsegs smax

The maximum number of simultaneous asynchronous operations that may

any one request may have in progress. The default is eight (8).

maxstalls mstall

The maximum number of times a client may fail to deliver data at a sufficient

rate to keep up with asynchronous I/O needs before future requests from the

client are synchronously handled. Asynchronous handling is tried again after

mstall number of synchronously handled requests. The default is four (4).

Esoteric xrootd Directives Configuration

70 XRootD Configuration 30-March-2022

maxtot slim

The maximum number of simultaneous asynchronous operations the server

may have in progress. The default is 4,096.

minsz reqsz

The minimum number of bytes required in a single client request for it to be

eligible for aync handling. I/O requests smaller than reqsz are always

synchronously handled. The reqsz can be suffixed by k, m, or g to indicate

kilo-, mega-, or giga-bytes; respectively. The default is 1.5 of the default segsz.

minsfsz sfsz

The minimum number of bytes that must be read in a single client request for

that request to be handled using sendfile(). I/O requests smaller than sfsz are

always handled in the standard way. The sfsz can be suffixed by k, m, or g to

indicate kilo-, mega-, or giga-bytes; respectively. The default is 8k for Linux, 1

otherwise.

nocache.

Disables using asynchronous I/O for caching servers (e.g. Xcache).

nosf Disables using sendfile(), where available, for all read requests.

off Disables asynchronous I/O for all requests. This is the default for the built-in

oss plug-in and cannot be changed.

segsize segsz

The segment size to use for quantizing I/O requests (i.e. requests are broken

into segsz pieces). The segsz can be suffixed by k, m, or g to indicate kilo-,

mega-, or giga-bytes; respectively. The default is 64k.

syncw

Uses synchronous I/O for all fsync requests. Otherwise, asynchronous I/O is

used for fsync requests if the client requested asynchronous I/O or if the force

has been specified.

timeout tmo

The maximum number of seconds an asynchronous operation may take

before the request fails. Specify a value between 1 and 360. The default is 45.

Configuration Esoteric xrootd Directives

30-March-2022 XRootD Configuration 71

Defaults
xrootd.async limit 8 maxsegs 8 maxstalls 4 maxtot 4096

 minsize 98304 minsfsz 8k segsz 64k timeout 45

Notes

1) Asynchronous requests allow the client to start a number of read

operations at one time and wait for the request to complete in optimal

order. When properly employed, asynchronous requests may

substantially improve overall client processing speed.

2) Asynchronous processing represents a substantial resource commitment

on part of the daemon. Each operation requires the dispatching of a

separate thread. Rampant asynchronous processing may exhaust resource

limits or allow a single client to more easily monopolize the server.

3) Asynchronous processing is effective when the disk transfer rate

approaches the network transfer rate. Thus, asynchronous processing is

enabled only when a sufficiently large amount of data is requested by the

client at one time. Use the minsize parameter to control the point where

asynchronous operation is effective.

4) The segsz parameter specifies the ideal I/O size for asynchronous

operations in order to maintain continuous incoming/outgoing transfer

overlap. Requests are broken into segsz units.

5) Conversion of asynchronous requests to synchronous requests is

transparent to the client.

6) The sendfile() interface allows data to be transferred directly from the

kernel’s file system memory cache to a client. Generally, this significantly

reduces system overhead.

7) Use the nosf option in cases where you suspect that the sendfile() interface

is causing data transfer problems.

8) Asynchronous I/O may cause incorrect cache hit/miss calculations because

the I/O size is not the true request size.

9) The pgread and pgwrite requests use a fixed 64k segsz as this is optimal.

10) The default values allow for the best overall performance in most cases.

Whenever changing these values you should measure the difference in

performance as changes may actually produce worse performance.

Example
 xrootd.async minsz 1M

Esoteric xrootd Directives Configuration

72 XRootD Configuration 30-March-2022

7.2 bindif

xrootd.bindif target

target: host[:port][%host[:port]] [target]

host: dnsname | [ipv6addr] | ipv4addr

Function

Specify the endpoints for future bound data paths.

Parameters

target The name or address of the host and optional port number where clients are to

use when creating an additional data path. When the port is omitted the

default of first assigned port number is used (see the notes for additional

caveats when specifying a port). Any number of targets may be specified. The

target consists of one or two host[:port] specifications with the second

separated by a percent sign (%). When a second host[:port] is specified, then

clients connecting using a private IP address are told to use the second

host[:port] while clients connecting with a public IP address are told to use to

the first host[:port]. If only one host[:port] is specified, no distinction is made

Defaults

By default, the session endpoint is used to create additional data paths.

Notes

1) When there is more than one target, the client round-robins the use of the

end-points as additional data paths are created.

2) When specifying a non-default port make sure that the port is added to

the list of ports the daemon should enable via the xrd.protocol directive

using the +port option.

3) When as actual host name is specified as a target, the host name must be

registered in DNS unless dynamic DNS is enabled. See the xrd.network

directive for more information and, specifically, the discussion on when

dynamic DNS should be enabled.

Example
xrootd.bindif foo.proxy.edu:1094

Configuration Esoteric xrootd Directives

30-March-2022 XRootD Configuration 73

7.3 chksum

xrootd.chksum [chkcgi] [max num] digest [path [args]]

digest: algorithim [digest]

Function

Specify how file check sums are computed.

Parameters

chkcgi

Always checks the cgi information, if any, for the cks.type element that can

be used to select a checksum algorithm. The cgi information is not checked if

only one digest is specified for backward compatibility. It is always checked if

more than one digest is specified, making chkcgi unnecessary. See the usage

notes for more information.

num Maximum number of checksum calculations that may run at the same time.

Specifying 0 prevents real-time check summing. See the notes for more

information.

algorithm

The name of the checksum digest (e.g., md5) used for the check summing.

Specify one or more supported digests, each separated by a space. The first

algorithm becomes the default algorithm. See the usage notes on how

multiple digests are supported,

path The absolute path of the program that computes the check sum. If path is not

specified, checksums are internally performed.

args Initial arguments to be passed to the program identified by path, if any.

Defaults

The default max is 4; otherwise. If path is not specified, checksums are

internally performed. File check summing is not supported unless the

directive is specified.

Esoteric xrootd Directives Configuration

74 XRootD Configuration 30-March-2022

Notes

1) When a client issues an xrootd query checksum request, the following

steps are performed:

a. A checksum digest is selected as follows:

i. If a single algorithm is specified and chkcgi was not specified,

the digest in the configuration file is used.

ii. If a single algorithm is specified and chkgi is specified, a cgi

scan is made for cks.type and, if specified, its argument must

match the single algorithm in the configuration file or an error

results. In any case, the digest in the configuration file is used.

iii. If more than one algorithm has been specified, a cgi scan is

made for cks.type and, if specified, its argument must match

one of the specified algorithms in the configuration file or an

error results. If there is a match, the cks.type argument is used

as the desired digest. If cks.type is not found, then the first

algorithm specified in the configuration file is used.

b. A check is made that the client has lookup privileges for the file and

that a valid checksum has been recorded for the file. If both are true,

that checksum is sent back to the client. If the client lacks lookup

privileges, an access error is sent back to the client.

c. Since a checksum needs to be computed the max value applies. If it is

zero, the client is told that the checksum is not available.

d. If the checksum is natively supported and no program path has been

specified, a new checksum is locally computed and recorded for future

queries. Otherwise, the program named in path is executed to compute

a new checksum and it is not recorded for future queries. Of course,

the program may record the checksum in some way for future queries.

e. Either the previously recorded checksum or the computed checksum is

provided to the client.

2) Native checksums are adler32, crc32, crc32c, and md5.

3) XRootD uses hardware assist features for crc32c should the platform

support them (e.g. AMD and Intel).

4) Use the ofs.ckslib directive to add new digests or improve the

performance of the native digests.

5) Since computation of multiple checksums is CPU and memory intensive

choose the max with circumspection. You can control memory usage via

the ofs.cksrdsz directive.

6) The ofs directives are documented on the OFS/OSS reference manual.

Configuration Esoteric xrootd Directives

30-March-2022 XRootD Configuration 75

7) When the program identified by path is invoked, it is passed the path to

the file that is to be processed. The actual argument list varies depending

on whether or not a single algorithm has been specified, as follows:

a. When a single algorithm has been specified, the program is passed the

file path as the last argument and is the only argument if no args have

been specified.

b. When multiple algorithms have been specified, the program is passed

the file path as the last argument and the checksum algorithm name as

the second to the last argument. If no args have been specified, these

are the only two arguments that are passed.

8) The program must output on standard out a single checksum value;

normally ending with a new-line (‘\n’) character and terminate with a

status code of zero. If the program terminates with a non-zero status code

or returns no output, the client’s request fails.

9) Upon success, the returned checksum value is passed back to the client,

prefixed by the digest token, digest.

10) Warning: If an external checksum program is specified (i.e. path is

specified), then neither the oss.localroot nor oss.namelib directives are

applied to the logical file name before passing the file name to the

specified program that computes the checksum. Hence, the program is

responsible for converting a logical file name to a physical file name.

11) When checksums are natively computed (i.e., path is not specified), then

the oss.localroot and oss.namelib directives are applied to the logical file

name. The checksum is computed against the resulting physical file name.

12) The chkcgi option is provided for backward compatibility. In previous

releases only one algorithm could be specified and cgi information was

immaterial. This processing mode remains the default when only a single

algorithm is specified. You may wish to verify that a client as not

requesting an unsupported digest in the case where some servers support

multiple checksums and others do not.

13) The administrator’s interface allows you to list and cancel checksum jobs.

This applies to external as well as internal computation of the checksum.

14) When max is zero, checksums on demand are prohibited. This requires

that checksums to be pre-computed. This can be done using the

frm_admin chksum command. See the File Residency Manager reference.

15) Using an external checksum calculation via the path option disables the

server’s ability to return checksums in a directory listing.

Example
 xrootd.chksum max 2 crc32c

Esoteric xrootd Directives Configuration

76 XRootD Configuration 30-March-2022

7.4 diglib

xrootd.diglib * authpath

Function

Enable remote debugging via the digFS read-only file system.

Parameters

* Loads the built-in version of digFS; the only the version currently supported.

authpath

The path to the authorization file that describes who is allowed to access

digFS and what kind of information they may view.

Defaults

By default, digFS is disabled.

Notes

1) The digFS provides a virtual read-only file system view of key

information about xrootd and cmsd that is valuable to remotely debug

system problems.

2) Since digFS exposes system information an authorization file describing

access permissions is required. See the next section.

3) When diglib is specified, the /=/ directory is automatically exported and

available to authorized users. You must not list /=/ in the all.export list.

4) The /=/ path always refers to local storage regardless of server role and is

never subject to redirection.

5) Only close, dirlist, locate, open, read, and stat requests can be vectored to

digFS. Other requests referring to /=/ are disallowed.

6) The digFS accepts configuration directives starting with dig. Refer to

subsequent sections for a description of these directives.

Example
 xrootd.diglib * /etc/xrootd/digauth.cf

Configuration Esoteric xrootd Directives

30-March-2022 XRootD Configuration 77

7.4.1 Authorizing digFS Access

The file describing digFS access permissions is composed of newline delimited

records. Each record describes a single entity that is authorized to access certain

information. The format of each record is

info allow aprot ident

info: all | [-]conf | [-]core | [-]logs | [-]proc | [info]

aprot: gsi | host | krb5 | pwd | sss | unix

ident: g=group | h=host | n=name | o=org | r=role | [ident]

Parameters

info Authorizes the entity described in the record to access certain information.

Use the word all to allow access to all information. If you specify all, you can

remove specific information by specifying subsequent information keywords

prefixed by a minus sign. Alternatively, list the info keywords to enable access

to the associated information described below.

Keyword Information Keyword Information

conf configuration file logs log files

core core files proc process information

(Linux only)

aprot Specifies the authentication protocol that must be used in order to use digFS.

Only one protocol per entity description may be specified. Since the

information provided by digFS is sensitive in nature you should use the

strongest authentication protocol consistent with site policies. The following

table lists the default protocols1 from strongest to weakest. Additionally, the

rightmost column lists the ident tags that can be successfully specified relative

to that protocol since not every protocol identifies clients in the same way.

See the XRootD security reference for more detailed information.

1
 Authentication is plug-in based and any implemented authentication protocol may be specified as aprot.

Esoteric xrootd Directives Configuration

78 XRootD Configuration 30-March-2022

Protocol Descritption Meaningful ident Codes

krb5 Kerberos Version 5 h n

gsi Grid Security Infrastructure (i.e. x.509) g h n o r

sss Simple Shared Secret g h n

pwd Password g h n o r

host DNS resolved hostname h

unix NFS V2-Style authentication g h n

ident Authorizes the aprot authenticated entity possessing the specified identity

values access to info digFS information. Identity values are specified as key

value pairs. The entity must match all the specified pairs in order to be

granted access. An imbedded space in a value must be designated as a \s (i.e.

two character sequence). Specifying an inappropriate key relative to an

authentication protocol prohibits access. The following table describes the

possible key value pairs.

Key Value

g Group name

h Fully qualified hostname

n Authentication-specific protocol client identity string (see notes)

o Organization name

r Role name

Notes

1) Valid entries in the authfile are used and syntactically incorrect entries are

discarded. At least one valid entry must exist for digFS to be enabled.

2) If the modification time of the authfile changes outside of a 5 second

window it is reprocessed. This allows you to modify the authfile on a

running system. However, you must atomically update the file as follows:

a. Create a copy of the file.

b. Modify the copy as needed.

c. Rename the copy to be the original name (i.e. use mv).

Distributing a modified copy of the file to other hosts should also use

rename to install the new authfile.

Configuration Esoteric xrootd Directives

30-March-2022 XRootD Configuration 79

3) Each authentication protocol has a specific way of identifying a client. For

instance, x.509 (i.e. gsi) uses distinguished name (i.e. dn). Depending on

the security configuration the protocol-specific name may be mapped to a

Unix name. If so, you must use the mapped name not the original name.

4) If an entity is associated with more than one group name then the

specified group (i.e. g=) must match one of the associated group names.

5) Starting in version 4.2 you are able to enable digFS but prevent its use by

simply not creating an authorization file or commenting out all

authorization entries. This allows you to enable its use in real-time

without restarting XRootD by either creating an authorization file or

adding authorization lines to an existing file.

6) Prior to 4.2 you must have a valid authorization file with at least one

authorization entry. However, that entry may be unsatisfiable. This also

allows you to selective enable or disable digFS without an XRootD restart.

Example
all –core allow krb5 h=test.org n=xtestor

conf logs allow gsi g=atlas n=theuser

Esoteric xrootd Directives Configuration

80 XRootD Configuration 30-March-2022

7.4.2 Optional digFS Directives

The digFS accepts the following directives in the configuration file.

7.4.2.1 addconf

dig.addconf path [fname]

Function

Add a configuration file reference to the digFS namespace.

Parameters

path The absolute path to a regular file that is to be added to “/=/conf/etc”. The

name of the file will be the same as the last component of path unless fname is

specified.

fname The name that is to appear in “/=/conf/etc” but refers to path.

Defaults

 None.

Notes

1) The path is only added if it is readable by the xrootd server.

2) This directive allows you to make other server related configuration files

available via digFS.

Example
 dig.addconf /etc/sysconfig/xrootd

Configuration Esoteric xrootd Directives

30-March-2022 XRootD Configuration 81

7.4.2.2 log

dig.log parm [parm]

parm: deny | grant | none

Function

Control the level of logging.

Parameters

parm The level of logging; specify one or more of:

deny - log file access denials

grant - log file access approvals

none - turn off logging

Defaults
 dig.log deny grant

Notes

1) To enable logging of denials and approvals you must specify both deny

and grant parameters.

Example
 dig.log deny

Esoteric xrootd Directives Configuration

82 XRootD Configuration 30-March-2022

7.4.3 Using digFS

The digFS file system can be accessed using standard file system applications. All

information is rooted in the /=/ directory and follows a standard layout. The

following table describes directory tree.

Directory Subdirectory Contents

/=/conf Configuration files cmsd.cf and xrootd.cf

 /etc Other site selected configuration files.

/=/core Core files

 /cmsd Directory holding cmsd core files.

 /xrootd Directory holding xrootd core files.

/=/logs Log files

 /cmsd Directory holding cmsd log files.

 /xrootd Directory holding xrootd log files.

/=/proc /proc files (Linux only)

 /cmsd Directory holding the cmsd proc files.

 /xrootd Directory holding the xrootd proc files.

If the cmsd and the xrootd share the same configuration file the /=/conf/cmsd.cf and

/=/conf/xrootd.cf will be identical. If they share the core file directory or the log file

directory; the same files may appear in the cmsd and xrootd subdirectories. As other

components are added to digFS, additional executable names may appear in each

root subdirectory.

To find out your access rights, simply list the entries in the /=/ directory. Only the

subdirectories for which you are authorized are displayed.

Configuration Esoteric xrootd Directives

30-March-2022 XRootD Configuration 83

7.5 fslib

xrootd.fslib [++] [throttle | path]

Deprecated (see notes):

xrootd.fslib [throttle | path2] {default | path1}

Function

Specify the location of the file system interface layer.

Parameters

++ The specified plug-in should stack on top of the existing plug-in or default.

Once specified, it cannot be replaced by a subsequent directive.

throttle

 Loads libXrdThrottle.so to wrap the subsequent library specification.

path The path to the shared library that contains the file system plug-in.

path2 The path to the shared library that is to be used as the wrapper for the

subsequent library specification.

default

 Loads a built-in version of the file system implementation.

path1 The path to the shared library that contains an implementation of the Open

File System (ofs) interface that xrootd is to use for file system specific

operations (e.g., open, close, read, write, rename, etc).

Defaults
xrootd.fslib default

Notes

1) When you only specify the shared library filename, the library is located

using the standard platform-dependent loader rules (e.g. well know

places followed by the LD_LIBRARY_PATH envar setting).

Esoteric xrootd Directives Configuration

84 XRootD Configuration 30-March-2022

2) The sfs interface allows you to provide an arbitrary file system

implementation. It is documented in XrdSfsInterface.hh. Refer to this

include file for differences between version 1 and 2 instantiation.

3) The deprecated version of his directive should be avoided The general

version is a superset of the deprecated version. In the common case

ofs.fslib throttle default

can be simply replaced by

ofs.fslib ++ throttle

Should you mix both styles, the deprecated version is handled before the

general version of the directive which may be confusing.

Example
 xrootd.fslib /opt/xrootd/lib/libofs.so

Configuration Esoteric xrootd Directives

30-March-2022 XRootD Configuration 85

7.6 fsoverload

xrootd.fsoverload [[no]bypass] [redirect target]

 [stall sec]

target: host:port[%host:port]

host: dnsname | [ipv6addr] | ipv4addr

Function

Specify how to handle file system overload.

Parameters

[no]bypass

 Specifies whether or not clients should be redirected to the client-specified

forwarding destination when the file system indicates it is overloaded. This

option is only meaningful for servers configured as forwarding proxies and is

ignored if that is not the case. It is only applicable when the client specifies a

forwarding destination.

redirect target

The name or address of the host and port number where clients are to be

redirected when the file system indicates that it is overloaded. The target

consists of one or two host:port specifications with the second separated by a

percent sign (%). When a second host:port is specified, then clients connecting

using a private IP address are redirected to the second host:port while clients

connecting with a public IP address are redirected to the first host:port. If only

one host:port is specified, all clients are redirected to that host.

stall sec

Specifies how long the client should be stalled when a redirect target is not

available and the file system indicates that it is overloaded. After the stall,

clients will re-issue the request. A value of zero passes back an overload error

to the client when the file system indicates an overload.

Defaults
xrootd.fsoverload nobypass stall 33

Esoteric xrootd Directives Configuration

86 XRootD Configuration 30-March-2022

Notes

4) The fsoverload directive is most effective for disk caching proxy servers.

Refer to the “Proxy Storage Services Configuration Reference” for

additional information on how to effectively use this directive.

5) Currently, the fsoverload directive only applies to file open requests. All

other requests encountering a file system overload event fail with an

overload error.

6) The bypass directive only applies to release 4.0 or higher clients. Older

clients that specify a forwarding path are subject to the stall option should

a file system overload event occur.

Example
xrootd.fsoverload bypass redirect foo.proxy.edu:1094

Configuration Esoteric xrootd Directives

30-March-2022 XRootD Configuration 87

7.7 log

xrootd.log [-]levent [[-]levent] [• • •]

levent: all | disc | login

Function

Specify event logging options.

Parameters

levent Specifies the events to be logged level. One ore more events may be specified.

The specifications are cumulative and processed left to right. Each event may

be optionally prefixed by a minus sign to turn off the setting. Valid events

are:

all logs all possible events, the default

disc disconnect events

login login events

Defaults
xrootd.log all

Notes

1) Events messages are routed to the xrootd log file.

Example
xrootd.log all -login

Configuration Esoteric xrootd Directives

30-March-2022 XRootD Configuration 89

7.8 mongstream

xrootd.mongstream events use parms

 events: {all | ccm | pfc | tcpmon | tpc} [events]

parms: [flush intvl[m|s|h]] [maxlen size[k]]

 [send fmt [noident] host:port]

fmt: {cgi | json} [hdr] | nohdr

hdr: dflthdr | sitehdr | hosthdr | insthdr | fullhdr

Function

Specify g-stream monitoring parameters and, optionally, enable selected

events.

Parameters

events The events to which this directive applies. The permissible events are:

Event Explanation

all Selection applies to all of the events below.

ccm cache context management information.

pfc proxy file cache information (i.e. proxy disk caching).

tcpmon TCP connection statistics at time of socket close.

tpc Third party copy for http and xroot protocols.

flush intvl

The maximum time event data may be internally buffered before it is sent to

the monitoring destination. Specify a number optionally suffixed by h for

hours, m for minutes, or s for seconds, the default. The default comes from

the xrootd.monitor directive.

maxlen size

the maximum size of the datagram. Specify no less than 1024 and no more

than 64k. The size can be suffixed by k to indicate kilo-bytes. The default

comes from the xrootd.monitor directive.

Esoteric xrootd Directives Configuration

90 XRootD Configuration 30-March-2022

send fmt [noident] host:port

specifies header formatting and the destination for the selected g-stream

events. This overrides whatever is specified in the xrootd.monitor directive

dest option. The fmt parameter specifies the header format, if any:

cgi formats the header as a CGI query string

json formats the header as a JSON object

nohdr do not include any header for any message. See the notes for caveats.

When an actual format (i.e. not nohdr) is specified, you may specify the kind of

header to be used:

dflthdr uses a minimal header to identify the message and timing.

sitehdr uses dflthdr but adds the site name, if any.

hosthdr uses sitehdr but adds the host name.

insthdr uses hosthdr but adds the port and instance name.

fullhdr uses insthdr but adds the program name and version.

When the previous specification is followed by noident, the server does not

send periodic identification messages. The noident option is the default when

nohdr is specified since an identification record requires a header.

The final element is the endpoint specification. Specify the host and port where

the selected g-stream messages are to be sent using UDP.

Defaults

Defaults come from the xrootd.monior directive. If a header format is

specified, the default is dflthdr.

Notes

1) The mongstream directive is meant to customize specific g-stream events.

It also allows enabling these events without enabling common monitoring

using the xrootd.monitor directive.

2) If you do not specify the send parameter, then g-stream monitoring is

controlled by the xrootd.monitor dest parameter. Otherwise, the send

specification overrides the xrootd.monitor specification.

3) You may still use common monitoring for g-streams via the

xrootd.monitor directive yet select specific flush intervals and message

sizes using the mongstream directive by simply not specifying the send

parameter.

Configuration Esoteric xrootd Directives

30-March-2022 XRootD Configuration 91

4) Specifying nohdr automatically disables identification messages as well as

any map messages. The latter makes dictionary mapping inoperative. If a

g-stream plug-in uses dictionary mapping, that mapping is never

recorded.

5) Unless the monitoring collectors are able to handle multiple header

formats, it is unwise to send different header formats to the same

collector. This is not enforced.

6) The mongstream directive is cumulative with each subsequent directive

replacing previously set values.

Example
 xrootd.mongstream all use send json datacoll:1234

Configuration Esoteric xrootd Directives

30-March-2022 XRootD Configuration 93

7.9 monitor

xrootd.monitor [...] [options] [dest dest [dest dest]]

options: [all] [auth] [flush [io] intvl[m|s|h]]

 [fstat intvl[m|s|h] [lfn] [ops] [ssq] [xfr cnt]]

 [ident {intvl[m|s|h] | off}] [fbuff size[k]]

 [gbuff size[k]] [mbuff size[k]] [rbuff size[k]]

 [rnums cnt] [window intvl[m|s|h]]

 dest: [events] host:port

 events: {ccm | files | fstat | io | info | pfc | redir |

 tcpmon | tpc | user} [events]

Function

Specify monitoring parameters and, optionally, enable it.

Parameters

... uses previously set values to allow a continuation. If the directive does not

start with a triple dot, all previous values are reset to initial defaults.

all Automatically enables monitoring for all connections. If all is not specified,

monitoring is only enabled upon client request for that specific client.

auth includes authentication information along with user information, when user

is specified and authentication has been configured.

flush [io] intvl

The maximum time event data may be internally buffered before it is sent to

the monitoring destination. Specify a number optionally suffixed by h for

hours, m for minutes, or s for seconds, the default. When io is specified, io

event data is also subject to flushing. Otherwise, only non-io events are

flushed. The default only applies to non-io events and is 10 minutes.

Esoteric xrootd Directives Configuration

94 XRootD Configuration 30-March-2022

fstat intvl [lfn] [ops] [ssq] [xfr cnt]

Enables file activity monitoring using a special “f” stream. The intvl is the

maximum time event data may be internally buffered before it is sent to the

monitoring destination. Specify a number optionally suffixed by h for hours,

m for minutes, or s for seconds. A value of zero disables the “f” stream. The

intvl is also used as the basis for xfr event data. By default, only file open and

close events are inserted into the stream. Additional information may be

requested as follows:

lfn includes the user’s dictionary identifier along with the logical file name

being opened in the open event record.

ops includes detailed operation count information along with minimum

and maximum values in the close event record.

ssq includes the sum of squares count for read and write sizes in the close

event record. Specifying ssq automatically includes ops. This option

impacts server performance. See the notes for more information.

xfr cnt inserts the number of bytes read and written from each open file every

intvl*cnt elapsed time. The cnt must be 1 or more.

ident sec

The number of seconds between each server identity transmissions (i.e., the

‘=’ map record). Specify a number optionally suffixed by h for hours, m for

minutes, or s for seconds, the default. A value of zero transmits the identity

only once at start-up time. Specifying off prevents identify records from

being sent. The default is 1 hour (i.e. 3600 seconds).

fbuff size

the maximum size of the datagram for file and I/O events (i.e. the f–stream).

Specify no less than 1024 and no more than 64k. The size can be suffixed by k

to indicate kilo-bytes. The default size is 64k.

gbuff size

the maximum size of the datagram for plug-in generated events (i.e. the g-

stream). Specify no less than 1024 and no more than 64k. The size can be

suffixed by k to indicate kilo-bytes. The default size is 32k.

mbuff size

the maximum size of the datagram for all other events not covered by a

specific xbuff parameter. Specify no less than 1024 and no more than 64k. The

size can be suffixed by k to indicate kilo-bytes. The default size is 16k.

Configuration Esoteric xrootd Directives

30-March-2022 XRootD Configuration 95

rbuff size

the maximum size of the datagram for redirection events (i.e. the r–stream).

Specify no less than 2048 and no more than 64k. The size can be suffixed by k

to indicate kilo-bytes. The default size is 32k.

rnums cnt

the number of redirection monitoring streams to start. Specify no less than 1

and no more than 8. The default size is 3.

window intvl

The monitoring window size. Data collected within the window is not

differentiated by time. Thus, the window represents the undifferentiated

sampling interval. Specify a number optionally suffixed by h for hours, m for

minutes, or s for seconds, the default. The default is 60 seconds.

dest events host:port

The events that are to be sent to the endpoint identified by host:port. All

monitoring messages are sent as datagrams (i.e., UDP protocol). The dest

parameter, if specified, must be specified as the last parameter. Up two

destinations are allowed. By default, only file event information is sent. The

permissible events are:

Event Stream Explanation

ccm g cache context management information.

files t file-related request monitoring (i.e., open and close

requests).

fstat f specified “f” stream information (i.e., open and close

requests).

io t I/O request monitoring (read and write requests plus

files).

iov t same as io above plus details on readv vector elements.

info m client specified monitoring data submitted using xrootd

protocol and other miscellaneous information.

pfc g proxy file cache information (i.e. proxy disk caching).

redir r redirection events.

tcpmon g TCP connection statistics at time of socket close.

tpc g Third party copy for http and xroot protocols.

user f client login and disconnect events.

Esoteric xrootd Directives Configuration

96 XRootD Configuration 30-March-2022

Defaults
flush 10m ident 1h fbuff 64k gbuff 32k mbuff 16k rbuff 32k \

rnums 3 window 60

Notes

1) Use the monitor directive to enable statistical gathering and reporting of

events, file information, and I/O requests.

2) The monitor directive not only sets general parameters but is also used to

enable monitoring streams whose events are sent with a common XRootD

binary header. The header facilitates the use of a central collection,

reformatting, and redistribution service.

3) Specifying the dest parameter enables the selected events to be sent to the

specified endpoint. If dest is not specified, common header event

monitoring is not enabled. You may, however, selectively enable

alternative g-stream event monitoring using the mongstream directive

even when other event monitoring is disabled.

4) The fstat ssq option impacts performance since floating point operations

must be carried out for each read and write request in order to accurately

compute the sum of squares. The counts can be used to compute the

standard deviation for read and write sizes. Do not specify this option

unless there is a clear need for such information.

5) The fstat ssq counts are available on platforms that use IEEE 754 floating

point format. The fstat ssq option is ignored on non-conforming

platforms.

6) The io option reports individual seeks for each read and write request.

While this data may be used to determine access patterns or used in I/O

trace simulation studies, it reduces server performance by about 7% and

generates a large amount of monitoring data. Normally, fstat provides

sufficient information about client I/O efficiency at a much lower cost.

7) The flush parameter does not apply to monitor streams that include io

event data unless io is specified. By default, monitor streams that include

io event data are flushed only when the internal monitor buffer becomes

full or when the user owning the stream being monitored disconnects.

8) You may specify two monitoring destinations. This allows you to isolate

data high volume streams (i.e., io monitoring) and provide real-time

display for low-volume streams (i.e., info, files, fstat, and user). Also refer

to the mongstream directive that provides for additional routing options.

Configuration Esoteric xrootd Directives

30-March-2022 XRootD Configuration 97

9) The all option forces monitor data to be collected for all connections. If all

is not specified, each client must enable monitoring manually using the

xrootd set request code (see the xrootd protocol specification). This allows

selective monitoring and gives each client the opportunity to tag io

monitor data with the relevant application name.

10) The iov option inserts a read entry for every element in a readv vector.

This may explode the amount of monitoring information that is generated.

By default, when only io is specified, a summary readv entry is placed in

the monitoring stream.

11) Clients cannot enable monitoring that has not been enabled by the

monitor directive.

12) Specifying a small datagram buffer size (e.g. less than 8k) increases the

number of datagrams that need to be sent and, consequently, adds to

server overhead. Large datagram buffer sizes reduce the number of

datagrams as well as server overhead but increase memory utilization as

each connection allocates a buffer.

13) Approximately 61 requests can fit into a 1K mbuff.

14) On average, 64 to 128 redirection events can fit into a 32K rbuff.

15) Increasing the number of redirection monitoring streams (rnums) reduces

the bottlenecks in the monitoring path.

16) Specifying a small window increases the timing accuracy of any

individual request entry at the expense of additional datagrams and

significantly increased server overhead. Conversely, large window sizes

reduce timing accuracy but also reduce server overhead.

17) The g-stream events: ccm, pfc, tcpmon and tpc are for events generated by

specific plug-ins. The plug-ins are loaded by variouis directives.

Specifying a g-stream whose associated plug-in has not been loaded is

ignored. The g-stream events are:

Event Plug-in Directive Type of information reported

ccm pss.ccmlib Cache context management events.

pfc pss.cachelib Data caching events.

tcpmon xrd.tcpmonlib TCP connection statistics at disconnect.

tpc http.exthandler

ofs.tpc

Third party copy statistics.

Esoteric xrootd Directives Configuration

98 XRootD Configuration 30-March-2022

18) Refer to the “XRootD Monitoring” reference for a detailed explanation on

the datagram format used by the monitoring subsystem. It is especially

important to understand the different between files, fstat, and io

monitoring as the information overlaps and there is rarely a need to

specify all three.

Example
 xrootd.monitor all fstat 5m dest fstat datacoll:5050

Configuration Esoteric xrootd Directives

30-March-2022 XRootD Configuration 99

7.10 pmark

xrootd.pmark parms

parms: [[no]debug] [defsfile [[no]fail] dparms]

 [domain {any | local | remote}]

 [ffdest fparms] [ffecho intvl[m|s|h]]

 [map2act exp {default | {role|user} name} act]

 [map2exp {default | {path path | vo vo}} exp]

 [[no]trace] [use {[[no]firefly] [[no]scitag]}]

 dparms: fpath | {curl | wget} [tmo[m|s|h]] url

 fparms: {origin[:oport] | host[:hport]}[,fparms]

Function

Specify packet marking parameters and, optionally, enable it. Caution: this

directive is experimental and subject to change.

Parameters

[no]debug

controls detailed debugging messages and should normally not be specified.

The nodebug option disables detailed log messages and is the default.

defsfile [[no]fail] dparms

specifies the location of the json definition file. This file maps experiment

names to experiment IDs and activity names within each experiment to their

respective activity IDs. It is required when either the map2act or map2exp

parameters are specified. The nofail option ignores processing errors of the

defsfile to prevent 3 rd party suppliers from preventing a server from starting

and is the default. When a processing error occurs, mapping is disabled

which may also disable packet marking. The nofail option does not cover

blatant configuration errors. The defsfile may be local or may exist at a

remote location, as described below.

Esoteric xrootd Directives Configuration

100 XRootD Configuration 30-March-2022

defsfile [[no]fail] fpath

the defsfile is local and fpath specifies it’s file system location as an

absolute path (i.e. starts with a slash).

defsfile [[no]fail] {curl | wget} [tmo[m|s|h]] url

the defsfle is remote and url specifies it’s remote location. The file is

downloaded using curl or wget (specify the program you wish to

use). Since the remote server may be inaccessible when the file needs

to be accessed, specify for tmo the maximum amount of time in

which the download must complete. The tmo value may be

optionally suffixed by h for hours, m for minutes, or s for seconds,

the default. If unspecified, a 30 second limit applies.

domain {any | local | remote}

specifies which type of connections the pmark directives applies to, as

follows:

any include local and remote connections.

local include local connections only, remote connections are ignored.

remote include remote connections only, local connections are ignored; this

is the default.

ffdest { origin[:oport] | host[:hport] | origin[:oport],host[:hport] }

specifies up to two the destinations for firefly UDP packets. When origin is

specified, packets are sent to the connecting client. When host is specified,

packets are sent to the specified host. Each may be suffixed by a port number

(i.e. oport for origin and hport for host). If a port number is not specified, a

value of 10514 is used. When specifying origin and host they must be

separated with a comma without any intervening spaces. The ffdest

parameter is required if the “use firefly” parameter is specified

ffecho intvl

specifies how often firefly UDP packets are to sent as long as the connection

is open. Specify for intvl a number optionally suffixed by h for hours, m for

minutes, or s for seconds, the default. Any value less than 30s is interpreted

as zero. The default is 0 and a firefly UDP packet, if enabled, is sent only at

the start of a connection and when the connection ends. Be aware that this

parameter is not yet implemented.

Configuration Esoteric xrootd Directives

30-March-2022 XRootD Configuration 101

map2act exp {default | {role|user} name} act

specifies how activities are to be determined for an experiment. There may be

as many such parameters as needed. For each parameter specify the name of

the experiment for exp and the name of the activity for act. The names must be

defined in the defsfile. The two major variations are described below:

map2act exp default act

defines the default activity for experiment exp when the actual

activity cannot be determined. When the activity cannot be

determined and no default exists, the activity is reported as

undetermined.

map2act exp {role | user} name} act

specifies that the experiment’s, exp, activity is based on either the

client’s role or the actual username. Specify for name either to role

name or the user’s name, as appropriate. See the notes for a

description of how this mapping actually occurs.

map2exp {default | {path path | vo vo}} exp}

specifies how experiments are to be determined. There may be as many such

parameters as needed. For each parameter specify the name of the experiment

for exp. The names must be defined in the defsfile. The two major variations

are described below:

map2exp default exp

defines the default experiment when the actual experiment cannot be

determined. When the experiment cannot be determined and no

default exists, the connection is not reported.

map2exp {path path | vo vo} exp

specifies that the experiment is based on either the path of the client’s

first successful file open or the client’s virtual organization. For path,

specify the logical path prefix, path, that maps to the experiment, exp.

For vo, specify the virtual organization name, vo. See the notes for a

description of how this mapping actually occurs.

[no]trace

Controls execution tracing information and should normally not be specified.

The notrace option disables execution tracing and is the default.

Esoteric xrootd Directives Configuration

102 XRootD Configuration 30-March-2022

use {[[no]firefly] [[no]scitag]}

specifies additional processing options, as follows:

[no]firefly]

Specifying nofirefly disables sending firefly UDP packets and

essentially disables packet marking. Specifying firefly enables it and

requires that ffdest be specified. When neither is specified, firefly

becomes the default if ffdest is specified and nofirefly otherwise.

[no]scitag]

Specifying noscitag disables checking the cgi string for the token

scitag.flow that normally identifies the experiment and activity.

Specifying or defaulting to scitag enables cgi checking. If the token is

found and the information is valid, it is used in the firefly UDP

packet; thus avoiding any other mapping rules.

Defaults
nodebug nofail domain remote ffecho 0 notrace use scitag

Notes

1) The pmark directive is primarily meant for controlling firefly UDP

packets to monitor data flows at the internet network level.

2) The pmark directives are cumulative with duplicate parameters replacing

previously specified values.

3) When a client connects and issues the first successful open request and the

experiment can be determined, a firefly UDP pack is sent to indicate the

start of a data flow. No additional packets are sent and all subsequent

traffic is assigned to the initial flow marker. When the client disconnects a

firefly UDP packet is sent to indicate the end of the flow.

4) If the experiment cannot be determined on the first successful open, no

firefly UDP packets are sent and the flow is not recorded.

5) The following features have not yet been implemented:

a. Automatic defsfile refresh. The server needs to be restarted to pick

up any defsfile changes.

b. A defsfile fallback to using the previously downloaded version if

the current download fails.

c. Periodic retransmission of the firefly UDP packet. When the ffecho

parameter, when specified, must be valid but otherwise ignored.

d. Integration with gstream monitoring.

Configuration Esoteric xrootd Directives

30-March-2022 XRootD Configuration 103

6) The following steps are taken to identify the experiment and activity:

a. If scitag usage is allowed and a valid scitag is found, it is used to

identify the experiment and activity.

b. If path mapping is enabled, the logical file name in the open

request is matched against the specified path prefixes in decreasing

length order. When a match is found its target is used to identify

the experiment.

c. If vo mappings are enabled, the first vo present in the client’s vo list

is matched against the specified vo mappings. When a match is

found, its target is used to identify the experiment.

d. If a default experiment has been defined, it is used. Otherwise,

firefly flow identification for the connection is disabled.

e. When user name activity mapping exist for the identified

experiment, the client’s name is matched against the specified user

mappings. When a match is found, its target is used to identify the

experimental activity.

f. If role mappings exist for the identified experiment, the first role

present in the client’s role list is matched against the specified role

mappings. When a match is found, its target is used to identify the

experimental activity.

g. If a default activity is defined for the identified experiment, it is

used. Otherwise, tha activity is reported as undetermined.

Example
xrootd.pmark defsfile curl https://api.scitags.org/api.json

xrootd.pmark ffdest firefly.esnet.net:1234

xrootd.pmark map2exp path /data/atlas atlas

xrootd.pmark map2exp path /data/cms cms

xrootd.pmark map2exp default atlas

xrootd.pmark map2act atlas role prod production

xrootd.pmark map2act cms user fts rebalancing

xrootd.pmark map2act cms default dc

Configuration Esoteric xrootd Directives

30-March-2022 XRootD Configuration 105

7.11 prep

xrootd.prep parms

parms: [keep ksec] [scrub time] [logdir ldir]

Function

Specify how prepare request tracking is done.

Parameters

keep ksec

The time that prepare request tracking record are to be held. The time may be

suffixed by s (the default), m , or h to indicate seconds, minutes, and hours,

respectively. The default is 24 hours.

scrub time

The time between scrubs of the tracking log directory. The time may be

suffixed by s (the default), m , or h to indicate seconds, minutes, and hours,

respectively. The default is 1 hour.

logdir ldir

The absolute path of the directory that is to hold the preparation tracking

records. A directory must be specified, otherwise preparation request

tracking is disabled.

Defaults

None. Preparation request tracking is normally disabled. When a logdir

directory is specified, the keep and scrub defaults of 24H and 1H apply,

respectively.

Notes

7) This directive allows server to track prepare requests. When request

tracking is enabled, each prepare is logged in the logdir directory. It then

becomes possible to list the requests and cancel them, if need be.

Esoteric xrootd Directives Configuration

106 XRootD Configuration 30-March-2022

8) Since there can be more than one redirecting xrootd server, prepare

requests may be scattered across several servers. It is the client’s

responsibility to collect information from each server in order to create a

composite preparation request history.

9) Each server uniquely names the files in the logdir directory. When

multiple xrootd redirecting servers exist, it is possible to collect full

preparation history from any server, if the logdir directory is located in a

shared file system (e.g., NFS).

10) When running multiple xrootd servers on the same machine, the instance

name (-n command line option) is used to differentiate logdir directories

among all instances by appending the instance name to the path.

Example
xrootd.prep keep 12H logdir /nfs/xrootd/preplog

Configuration Esoteric xrootd Directives

30-March-2022 XRootD Configuration 107

7.12 redirect

xrootd.redirect target {client domlist | byfunc}

domlist: {local | private | .domain} [domlist]

byfunc: {[-]foper | [?] path [path […]]}

foper: {all | chmod | chksum | dirlist | locate | mkdir

 | mv | prepare | prepstage | rm | rmdir | stat

 | trunc} [[-]foper]

target: host:port[%host:port]

host: dnsname | [ipv6addr] | ipv4addr

Function

Specify request forwarding.

Parameters

target The name or address of the host and port number where clients are to be

redirected based on the subsequent parameters. The target consists of one or

two host:port specifications with the second separated by a percent sign (%).

When a second host:port is specified, then clients connecting using a private IP

address are redirected to the second host:port while clients connecting with a

public IP address are redirected to the first host:port. If only one host:port is

specified, all clients are redirected to that host.

domlist

 Specifies which clients, by domain, should be redirected. The redirection

occurs after login but before any significant client activity. Only one client

redirection may be defined. Specify one or more of the following:

local clients whose IP address is in the server’s DNS domain.

private clients using a private IP address.

.domain clients whose IP address is in the DNS domain (e.g.

“.oscer.ou.edu” note the leading period).

Esoteric xrootd Directives Configuration

108 XRootD Configuration 30-March-2022

foper Specifies which metadata operations are to be immediately redirected. One or

more operations may be specified. The specifications are cumulative and

processed left to right. Each operation may be optionally prefixed by a minus

sign to turn off the setting. Valid operations are:

all redirect all possible operations

chmod redirect change mode requests

chksum redirect checksum requests

dirlist redirect directory content listing requests

locate redirect path location requests

mkdir redirect create directory requests

mv redirect rename requests

prepare redirect prepare requests that do not need file staging

prepstage redirect prepare requests that may need file staging

rm redirect file removal requests

rmdir redirect directory removal requests

stat redirect file attribute requests

trunc redirect file truncate requests using a path

path Specifies that when a file open request occurs on the specified path prefix, the

client should be redirected to the specified host and port. One or more paths

may be specified. However, no more than four different host-port

combinations may be specified.

? path Specifies that any client operation on the specified path prefix that ends with

a “not found” error (i.e., EONOENT) and has not been specifically covered

by another redirect directive, the client should be redirected to the specified

host and port. All subsequently specified paths, if any, on the line fall under

the “not found” provision.

Defaults
xrootd.redirect -all

Notes

1) Request redirection is typically applicable to the cluster manager. Refer to

the role directive in the “Clustering Configuration Reference” for

additional information, especially on inter-related directives.

2) Client IP address based redirection is primarily meant to protect proxy

servers from clients within a domain who mistakenly use the proxy server

when they could have directly connected to services fronted by the proxy

server.

Configuration Esoteric xrootd Directives

30-March-2022 XRootD Configuration 109

3) Normally, meta-data requests are performed on the local host. However,

certain clustered environments may be controlled by a central manager

that records the exact state of every file. In such environments, the central

manager may perform meta-data requests. When the redirect directive is

not specified, the client is directed to perform the operation on a single

host, normally the one that has the file. When the request is redirected, the

target host is responsible for performing the operation.

4) The redirect path prefixes are always matched from most- to least-specific

prefix (i.e., longest to shortest).

Example
xrootd.redirect all -prepare

Configuration Esoteric xrootd Directives

30-March-2022 XRootD Configuration 111

7.13 tls

xrootd.tls [capable] req

req: [-]all | [-]data | [-]login | none | off |

 [-]session | [-]tpc | req

Function

Specify transport layer security (TLS) requirement.

Parameters

capable

applies requirements only to TLS capable clients. The default is to apply TLS

requirements to all clients irrespective of their ability to use TLS.

req specifies the general requests for which TLS must be used. Clients who

attempt these requests without using a TLS connection are rejected with a

“TLS Required” error message. Valid req are:

all requires TLS for all requests

 data requires that all file data or metadata be transmitted using TLS

login requires TLS for login requests and all subsequent requests

none turns off all requirements (off is a synonym)

session requires TLS for all requests after the login and authentication

tpc requires TLS for third party copy requests

Defaults
xrd.tls none

Notes

1) The capable parameter is meant to provide a migration path for pre-

Release 5 clients (i.e. those that do not support TLS). Requiring TLS for all

clients essentially disallows older clients from using XRootD.

2) The tls directive is cumulative and allows different settings for TLS-

capable clients and those that do not support TLS. See the examples on

how to accomplish this.

3) Specifying a minus sign in front of any indicated requirement removes

that requirement from the current set of requirements.

Esoteric xrootd Directives Configuration

112 XRootD Configuration 30-March-2022

4) The session requirement is a subset of the login requirement. If both are

specified, login prevails.

5) The data requirement applies to the session connection as well as any

additional connections bound to the session. If data is specified without

specifying login or session, session is automatically added to the

requirements.

6) At least one requirement must be specified, even if it’s none or off.

7) When none or off is encountered, all applicable requirements are

discarded.

8) The requirements only apply to the XRootD protocol. They do not apply

to any other protocols running in parallel with XRootD.

9) The tls directive fails if TLS has not been configured using the xrd.tls

directive.

Example
xrootd.tls tpc

The above requires that any third party copy request use a TLS connection. This also

prohibits older client (i.e. those incapable of TLS) from requesting a third party

copy. Adding the following directive

xrootd.tls capable session

also requires that TLS capable clients must use a TLS connection after the login and

authentication phases. Note that while session also covers third party copy requests,

the preceding directive requires that all TPC requests use TLS. Hence, non-capable

clients can do anything they are allowed to do but cannot request a third-party copy.

Configuration Esoteric xrootd Directives

30-March-2022 XRootD Configuration 113

7.14 trace

xrootd.trace [-]option [[-]option] [• • •]

option: all | auth | debug | emsg | fs | fsaio | fsio |

 login |mem | off | pgcserr | redirect | request |

 response | stall

Function

Specify execution tracing options.

Parameters

option The tracing level. One or more options may be specified. The specifications

are cumulative and processed left to right. Each option, other than off, may

be optionally prefixed by a minus sign to turn off the setting. Valid options

are:

all selects all possible trace levels*

auth traces the result of client authentication

debug traces internal activities for debugging purposes*

emsg traces errors sent back to the client

fs traces file system requests other than I/O requests

fsaio traces file system asynchronous I/O requests*

fsio traces file system synchronous I/O requests*

login traces login and authentication steps

mem traces memory management functions*

off traces nothing

pgcserr traces checksum errors encountered by pgwrite

redirect traces client redirections to other servers

request traces client request information

response traces request response information

stall traces client deferrals due to resource limitations

 *these selections severely reduce server performance

Defaults
xrootd.trace off

Esoteric xrootd Directives Configuration

114 XRootD Configuration 30-March-2022

Notes

1) Warning: enabling tracing may reduce server performance by 50%!

2) All tracing is enabled when the daemon is invoked with the –d option.

3) All previous trace settings are discarded when off is encountered.

Example
xrootd.trace all -debug

Configuration HTTP & HTTPS

30-March-2022 XRootD Configuration 115

8 Enabling HTTP Access

XRootD supports HTTP access via a protocol plug-in. The HTTP protocol can run

alongside of standard XRootD protocol without any interference; providing an

additional access mode. To Enable HTTP access, add the following configuration

parameter to the configuration file.

if exec xrootd

xrd.protocol http[:port] path/libXrdHttp.so [cfgfile]

fi

Parameters

port The port number http is to use for incoming requests. Specify a number, the

name of a TCP service, or the word any. If you do not specify port number,

port 1094 is used. This is also the default port for XRootD protocol.

path The path to the shared library libXrdHttp.so that contains the code the

implements the HTTP protocol.

cfgfile is the path to an external configuration file specific to HTTP. If not specified,

the configuration file at daemon start-up is used.

Defaults

Not applicable.

Notes

1) You should surround the xrd.protocol directive with the shown if-fi if

you are using a common configuration file for xrootd and cmsd daemons.

Failure to do so will prevent the cmsd from starting.

2) All HTTP requests are bound by any “xrd.” and “xrootd.” Directives that

exist in the start-up configuration file. Hence, HTTP access cannot exceed

any restriction imposed by those directives.

3) Monitoring of HTTP requests is handled as if they are XRootD requests.

Consequently, the monitoring stream includes all HTTP requests as well.

However, monitoring information is tagged with the fact that the

information was generated by the HTTP protocol.

HTTP & HTTPS Configuration

116 XRootD Configuration 30-March-2022

4) While the default port number is the same as for XRootD; the framework

directs each request to appropriate protocol and these requests are never

intermixed. To avoid any confusion you may wish to use a more standard

HTTP port number such as 8080. This is especially true if connection are

made using HTTPS.

5) Additional configuration file directives specific to HTTP are always

prefixed with “http.” and the following sections describe these directives.

6) HTTP support also includes WebDav support enabling a wider range of

access abilities beyond simple get and post capabilities.

7) When HTTP is used in a clustered XRootD deployment, all servers in that

deployment must have HTTP enabled. Failure to do so typically results in

access failure when a client is redirected to a serer that holds the desired

file but for which HTTP was not enabled.

8) Not all HTTP clients support all HTTP features. While the plug-in does

not violate the HTTP or WebDav standards, it does implement a wide

range of allowable features (e.g. redirection on POST requests) that may

not be supported by the HTTP client being used.

Configuration HTTP & HTTPS

30-March-2022 XRootD Configuration 117

8.1 Enabling HTTPS
When a server is configured to use HTTPS, each server processes the client’s

credentials from the connection. This allows the client to be authenticated and

makes authorization possible. On the other hand, HTTPS is very resource

demanding because it encrypts and decrypts all of the TCP traffic. Additionally, the

process of establishing an encrypted connection requires several network inter-

changes that increase connection latency which can be substantial on a wide area

network.

While HTTP is much faster it is impossible to authenticate the client using HTTP.

However, the HTTP plug-in allows a client to initially connect with HTTPS, extract

the authentication information, encode that information in a low-overhead

encrypted security token and redirect the connection to use HTTP. This is known as

HTTPS to HTTP conversion and is much less resource intensive. When a server is

configured to do HTTPS to HTTP conversion, it always expects a security token to

be present when a client connects via HTTP. If the token is missing or cannot be

decrypted the connection is rejected. This mechanism provides a relatively secure

authentication but at the expense of privacy as no traffic is encrypted past the

authentication stage.

HTTPS to HTTP conversion is especially attractive in clustered environments where

a client typically makes contact with a particular node (i.e. redirector) that then

redirects the client to a particular server that holds the requested file. Using HTTPS

everywhere incurs identical overhead at each contact point. This can be eliminated

by using HTTPS at the initial contact point and converting HTTPS to HTTP for

subsequent connections. This incurs the overhead just once.

When enabling HTTPS you should consider the following points:

 If only HTTPS is configured, then the server only accepts HTTPS

connections (see the xrd.tls and xrd.tlsca directives).

 If HTTPS to HTTP conversion is configured a server accepts an HTTPS

connection or an HTTP connection that provides a valid security token (see

the secretkey directive)

 If self-conversion of HTTPS to HTTP is configured, the server

unconditionally redirects any HTTPS incoming connections to itself; using

HTTP and a security token (see the selfhttps2http directive). This allows

greater performance for subsequent requests.

HTTP & HTTPS Configuration

118 XRootD Configuration 30-March-2022

When using HTTP in an XRootD cluster, additional considerations apply on how

the cluster redirector interacts with data servers in that cluster. The following table

provides reasonable possibilities, depending on the degree of security that is

desired.

Redirector Accepts Server Accepts Configuration Remarks

HTTP HTTP The is the default No security.

HTTPS HTTP with

security token

Specify xrd.tls,

xrd.tlsca and

http.secretkey

directives.

Central

authentication, fast

unencrypted data

access but higher

CPU load in the

redirector

HTTP HTTPS Specify xrd.tls and

xrd.tlsca directives

only in data

servers. Specify

http.desthttps in

redirectors.

Fast redirection,

distributed

authentication,

slow encrypted

data access

HTTP HTTPS with self

redirection using

HTTP with

security token

Specify xrd.tls,

xrd.tlsca,

http.selfhttps2http

and http.secretkey

directives only in

data servers.

Specify

http.desthttps in

redirectors.

Fast redirection,

distributed

authentication, fast

unencrypted data

access

HTTPS HTTPS Specify xrd.tls and

xrdtlsca directives

in servers and

redirectors.

Fully authenticated

but authentication

occurs twice, slow

encrypted data

access, resource

consumption can

be high

Configuration HTTP & HTTPS

30-March-2022 XRootD Configuration 119

8.1.1 Backward Compatibility and Overrides

Exceptions are handled by the http.httpsmode directive. See this directive on how to

control backward compatibility warning messages.

8.2 Directives to Enhance HTTPS Access

By default, HTTPS access is not enabled. You must specify certain critical xrd

information in order for HTTPS to be enabled (i.e. xrd.tls and xrd.tlsca).

The xrd framework provides TLS services to all protocols and HTTPS relies on

these services. The xrd.tls and xrd.tlsca directives should be used to configure TLS

for HTTPS. Previous releases relied on http specific directives to do this (i.e.

http.cadir, http.cafile, http.cert and http.key). These are still accepted and still allow

HTTPS to be configured. However, when specified a warning message is issued to

remind you to use the xrd framework directives instead. It is best to configure TLS

for all protocols using a common set of directives to avoid inconsistency. Therefore,

the http-specific TLS directives have been deprecated.

However, there are other directives that are specifically oriented to improving the

handling of HTTPS. These are described in the following sections.

HTTP & HTTPS Configuration

120 XRootD Configuration 30-March-2022

8.2.1 desthttps

http.desthttps {no | yes}

Function

Specify whether or not HTTPS is to be used for redirections.

Parameters

no A redirector will always redirect a client using http. The word false and the

number 0 are synonyms.

yes A redirector will always redirect a client using https. The word true and the

number 1 are synonyms.

Defaults

http.desthttps no

Notes

1) While this directive applies normally applies to redirectors it is used by

any node, redirector or data server that redirects a client.

Example
http.desthttps yes

Configuration HTTP & HTTPS

30-March-2022 XRootD Configuration 121

8.2.2 gridmap

http.gridmap [required] [compatNameGeneration] path

Function

Specify the file containing the "grid map file" that the server must use.

Parameters

required

 when specified treats any gridmap errors as fatal errors.

compatNameGeneration

when no mapping exists the entity name format adheres to the format used

by GSI authentication (i.e. unqualified DN hash).

path The path to the file.

Defaults

None.

Notes

1) This file is loaded at startup and used to translate the requestor’s x509 DN

into a short user name for internal authorization usage.

2) Unlike other directives, the optional option must be specified in the order

pictured above.

3) This directive requires that HTTPS be enabled with certificate verification.

Example
http.gridmap /etc/grid-security/mapfile

HTTP & HTTPS Configuration

122 XRootD Configuration 30-March-2022

8.2.3 httpsmode

http.httpsmode {auto | disable | manual}

Function

Specify how to handle enabling HTTPS protocol.

Parameters

auto automatically enables the use of HTTPS if the underlying xrd framework was

configured to allow TLS (i.e. the xrd.tls and xrd.tlsca directives). This is the

default.

disable

disables the use of HTTPS regardless of any other directives.

manual

enables the use of HTTPS but requires that the appropriate http directives are

used to specify required HTTPS parameters (i.e. http.cadir, http.cafile,

http.cert and http.key).

Defaults
http.httpsmode auto

Notes

1) When auto is in effect, you may still override xrd directives that are used

for HTTPS. However, each override produces a warning message. To

suppress the warnings specify manual and provide all the required http

directives to configure HTTPS.

Example
http.httpsmode manual

Configuration HTTP & HTTPS

30-March-2022 XRootD Configuration 123

8.2.4 secretkey

http.secretkey {path | token}

Function

Specify the key to be used to encrypt and decrypt redirection tokens.

Parameters

path The absolute path to the file containing a random string of alpha-numeric

characters and symbols that are to be used to encrypt and decrypt redirection

tokens.

token A random string of alpha-numeric characters and symbols that are to be used

to encrypt and decrypt redirection tokens. The token may not start with a

slash. Warning! Specifying the key in the configuration file exposes the key to

theft whenever the configuration file is displayed!

Defaults

None.

Notes

1) The same key must be used by all nodes within a cluster.

2) Specifying a secret key automatically enables HTTPS to HTTP

conversion.

Example
http.secretkey /admin/thekey

HTTP & HTTPS Configuration

124 XRootD Configuration 30-March-2022

8.2.5 selfhttps2http

http.selfhttps2http {no | yes}

Function

Specify whether or not a server may redirect an HTTPS connection to itself

using HTTP plus a security token.

Parameters

no A server should continue to use HTTPS for all communications. The word

false and the number 0 are synonyms.

yes A server should convert an HTTPS session to an HTTP session by redirecting

the client to itself using HTTP plus a security token. The word true and the

number 1 are synonyms. You must also specify the secretkey directive.

Defaults
http.selfhttps2http no

Notes

1) This option is meant to control the level of data privacy that is desired.

Normally, HTTPS connections are converted to HTTP connections after

authentication information is extracted from the HTTP stream. This

greatly reduces overhead as no data past the authentication stage has to be

encrypted.

2) When an HTTPS connection is converted to an HTTP connection, the

redirection includes a security token encrypted with the key specified by

with the secretkey directive. The HTTP connection is only accepted if the

token can be decrypted using the same key.

Example
http.selfhttps2http yes

Configuration HTTP & HTTPS

30-March-2022 XRootD Configuration 125

8.2.6 secxtractor

http.secxtractor path [parms]

Function

Specify the location of the specialized authentication information extractor

plug-in.

Parameters

path The path to the shared library containing the plug-in.

parms The parameters to the shared library containing the plug-in.

Defaults

None.

Notes

1) A Security eXtractor plug-in is a component that can be loaded at

initialization time in order to provide specialized processing to the

certificate passed by the client. Normally, all authentication information

comes from the standard part of the client certificate and any extensions

are ignored. A Security eXtractor can be used to extract other information

from the certificate or any of its extensions. This information is then

passed along and may be used for other authorization functions within

XRootD.

2) The typical case for which a security extractor library is needed is to

extract the extended VO information from a Grid client’s certificate.

3) A general purpose VO Security eXtractor plug-in is available with the gsi

package that can be used with HTTPS. See the explanation of the VOMS

plug-in in the security reference.

4) The secxtractor plug-in requires that HTTPS be enabled with certificate

verification (i.e. xrd.tlsca or http.cadir or http.cafile be specified).

Example
http.secxtractor /usr/lib64/libXrdSecgsiVOMS.so

HTTP & HTTPS Configuration

126 XRootD Configuration 30-March-2022

8.2.7 tlsreuse

http.tlsreuse off | on

Function

Specify transport layer security (TLS) session reuse characteristics.

Parameters

off disables the TLS session cache and may substantially increase latency for

reconnecting clients. This is the default.

on enables the TLS session cache.

Defaults
http.tlsreuse off

Notes

1) The https protocol cannot successfully use the TLS session cache when it

needs to handle TLS peer certificates. This is why the default is off.

2) The cache is flushed every 255 connection which is not ideal but the

mechanism OpenSSL uses.

Configuration HTTP & HTTPS

30-March-2022 XRootD Configuration 127

8.2.8 Deprecated HTTPS Directives

8.2.8.1 cadir

http.cadir path

Function

Specify the directory containing the CA certificates (see the cafile directive as

an alternative).

Parameters

path The path to the directory.

Defaults

None.

Notes

1) Replace this directive with xrd.tlsca to configure all protocols to use the

same certificate directory.

2) All of the certificates in the directory must be in a format that is

recognized by the version of OpenSSL is being used.

3) If the certificate information is contained in a single file, you should either

use the xrd.tlsca certfile (preferable) or the http.cafile directive.

Example
http.cadir /etc/grid-security/certificates

HTTP & HTTPS Configuration

128 XRootD Configuration 30-March-2022

8.2.8.2 cafile

http.cafile path

Function

Specify the file containing the CA certificates.

Parameters

path The path to the file.

Defaults

None.

Notes

1) Replace this directive with xrd.tlsca certfile to configure all protocols to

use the same certificate file.

2) All of the certificates in the file must in a format that is recognized by the

version of OpenSSL is being used.

3) If certificates are contained in multiple files you should use the xrd.tlsca

certdir (preferable) or the http.cadir directive.

Example
http.cafile /etc/myCA.pem

Configuration HTTP & HTTPS

30-March-2022 XRootD Configuration 129

8.2.8.3 cert

http.cert path

Function

Specify the file containing the x.509 certificate that the server must use.

Parameters

path The path to the file.

Defaults

None.

Notes

1) Replace this directive with xrd.tls to configure all protocols to use the

same certificate.

2) The certificate must be in PEM format.

3) See the related http.key directive to specify the location of the private key.

Example
http.cert /etc/grid-security/hostcert.pem

HTTP & HTTPS Configuration

130 XRootD Configuration 30-March-2022

8.2.8.4 cipherfilter

http.cipherfilter ciphers

Function

Specify the allowed ciphers for transport layer security (TLS).

Parameters

ciphers

A list of colon separated ciphers that are allowed to be used.

Defaults

For OpenSSL versions greater than 1.0.2 the ciphers recommended by

mozilla.org version 5.4 guidelines are used. These are strict ciphers. For older

OpenSSL versions, generic ciphers are used for compatibility reasons.

Notes

1) Replace this directive with xrd.tlscipher to configure all protocols to use

the same ciphers.

2) The http.cipherfilter directive is provided in cases where a default cipher

has been shown to be insecure and should be removed. In this case, you

need to specify all of the ciphers less the one you wish to eliminate.

Example

http.cipherfilter ALL:!LOW:!EXP:!MD5:!MD2

Configuration HTTP & HTTPS

30-March-2022 XRootD Configuration 131

8.2.8.5 key

http.key path

Function

Specify the file containing the x.509 private key that the server must use.

Parameters

path The path to the file.

Defaults

None.

Notes

1) Replace this directive with xrd.tls to configure all protocols to use the

same certificate key.

2) The key must be in PEM format.

3) See the related http.cert directive to specify the location of the server’s

certificate.

4) Specifying a key without specifying a certificate location is inconsistent

and causes the key specification to be ignored along with a warning

message.

Example
http.key /etc/grid-security/hostkey.pem

HTTP & HTTPS Configuration

132 XRootD Configuration 30-March-2022

8.3 Common Directives

8.3.1 embeddedstatic

http.embeddedstatic {no | yes}

Function

Specify where CSS template and logo is to come from for formatted listings.

Parameters

no The CSS template and logo information must be over-ridden by another file

containing such information. The word false and the number 0 are

synonyms.

yes An internal memory-based CSS template and logo should be used. The word

true and the number 1 are synonyms.

Defaults

http.embeddedstatic yes

Notes

1) Using the default memory-based CSS template and logo provide much

better performance and makes the setup much simpler.

2) If you need to use a custom style sheet, significant performance gains can

be achieved by preloading the style sheet file using the staticpreload

directive.

Example
http.embeddedstatic yes

Configuration HTTP & HTTPS

30-March-2022 XRootD Configuration 133

8.3.2 exthandler

http.exthandler name path [token]

Function

Specify the location of the external handler plug-in.

Parameters

name a 1- to-16 character unique name identifying the handler.

path The absolute path to the shared library that contains an implementation of the

handler.

token An optional parameter to be passed to the plug-in object creation function.

Typically, this is the name of a configuration file.

Defaults

None.

Notes

1) Each exthandler is invoked for every HTTP request to allow special

handling for certain requests.

2) No more than 4 handlers may be loaded.

Example
 http.exthandler mhandler17 /opt/http/lib/libExtHndlr.so

HTTP & HTTPS Configuration

134 XRootD Configuration 30-March-2022

8.3.3 header2cgi

http.header2cgi hdrkey cgikey

Function

Specify which headers are to be promoted to cgi information and appended

to the incoming url.

Parameters

hdrkey the header key that is to be promoted to cgi information.

cgirkey the cgi key name that the promoted header should have.

Defaults

None.

Notes

1) Normally, header information is internally processed and not made

available to other plug-ins. The header2cgi directive allows you to pass on

header information to external plug-ins via the incoming url by

promoting the header payload to a cgi element.

2) Assuming xyzzy is the payload of header with a key of auth, the example

shown below would promote the header by appending “authz=xyzzy” to

the incoming url as cgi information before it is passed to other system

components. This essentially makes the header visible outside of the http

plug-in.

3) The header2cgi directive is meant to be used for non-http plug-ins that

wish to consider specific information sent via the http protocol.

Example
http.header2cgi auth authz

Configuration HTTP & HTTPS

30-March-2022 XRootD Configuration 135

8.3.4 listingdeny

http.listingdeny {no | yes}

Function

Specify whether or not directory listings are allowed.

Parameters

no Directory listings are not allowed. The word false and the number 0 are

synonyms.

yes Directory listings are allowed. The word true and the number 1 are

synonyms.

Defaults

http.listingdeny no

Notes

1) In a clustered environment a listing of a directory via HTTP only lists the

directory of some arbitrary server in the cluster. Since files are scattered

across all of the servers in the cluster; this likely produces an incomplete

listing. You may wish to deny directory listings to avoid confusion.

2) Alternatively, you can redirect directory listings to a special node that can

produce a composite listing using all nodes in the cluster via the

listingredir directive.

3) Note that the XRootD based xrdfs command automatically produces a

composite listing.

Example
http.listingdeny yes

HTTP & HTTPS Configuration

136 XRootD Configuration 30-March-2022

8.3.5 listingredir

http.listingredir desturl

Function

Specify the node to which to redirect clients requesting a directory listing.

Parameters

desturl The redirection URL to use when a directory listing is requested.

Defaults

None.

Notes

 None.

Example
http.listingredir http://hostwhichprovideslistings:80/

Configuration HTTP & HTTPS

30-March-2022 XRootD Configuration 137

8.3.6 staticpreload

http.staticpreload url path

Function

Preload a static resource file into memory.

Parameters

url The URL naming a static resource (e.g. style sheet or icon).

path The path to the local file containing the resource.

Defaults

None.

Notes

1) Static resources named in a URL must start with “/static” in order to be

recognized.

2) The contents of the static resource contained in path may not exceed 64K.

If it does, it is truncated to 64K.

3) Typical static resources are URL resources ending with “.css” and “.ico”.

4) This directive is ineffective if the staticredir directive is specified.

Example
http.staticpreload http://static/mycss.css /etc/mycss

http://static/mycss.css

HTTP & HTTPS Configuration

138 XRootD Configuration 30-March-2022

8.3.7 staticredir

http.staticredir newurl

Function

Preload a static resource file into memory.

Parameters

newurl The URL the client is to be redirected to when requesting a non-local or

unsupported static resource.

Defaults

None.

Notes

1) The staticredir directive is only effective when a) embeddedstatic

processing is disabled, or b) the resource is neither a content style sheet

nor an icon.

Example
http.staticredir http://althost/

http://static/mycss.css

Configuration HTTP & HTTPS

30-March-2022 XRootD Configuration 139

8.3.8 trace

http.trace [-]option [[-]option] [• • •]

option: all | debug | none | off | request | response

Function

Specify execution tracing options.

Parameters

option The tracing level. One ore more options may be specified. The specifications

are cumulative and processed left to right. Each option may be optionally

prefixed by a minus sign to turn off the setting. Valid options are:

all selects all possible trace levels

debug traces internal activities for debugging purposes

none traces nothing

off a synonym for none

request traces client request information

response traces request response information

Defaults

Tracing is disabled.

Notes

1) All tracing is enabled when the daemon is invoked with the –d option.

2) All previous trace settings are discarded when none or off is encountered.

3) Tracing seriously degrades server performance. Use this directive only for

debugging purposes.

Example
http.trace all -debug

Configuration Documentation Changes

30-March-2022 XRootD Configuration 141

9 Document Change History

14 March 2005

 Remove documentation on local redirection mode.

 Remove documentation of –s command line option.

 Add ‘-t’ option to the StartXRD documentation.

 Significantly change the port directive, adding “port any” and “if”.

 Discuss using “port any” mode.

26 April 2005

 Further clarified the xrootd monitor flush parameter.

1 June 2005

 Added description of conditional directives (if-fi).

 Added description of the –n command line option.

 Fully explain which run-time files are created.

 Deprecate –r, –t, and –y command line options.

 Deprecate the XRDMODE variable and remove the description of the

XRDTYPE variable in the StartXRD.cf script.

 Remove extraneous options from the StartXRD script.

1 Aug 2005

 Document administrative interface portal socket.

 Add file size to open monitor record.

16 Aug 2005

 Add authentication mapping (a-record) to monitoring data.

6 Jan 2006

 Document the -b and -R command line options.

 Document how to independently bind different port numbers to

available protocols.

25 Jan 2006

 Add max option to chksum directive.

22 March 2006

 Add exec condition to if/else/fi.

Documentation Changes Configuration

142 XRootD Configuration 30-March-2022

28 February 2007

 Cleaned up documentation relative to role directive and all prefix

modifier.

 Documented the xrootd.redirect directive.

 Removed the xrd.connections directive.

 Placed most xrd directives in esoteric status.

28 March 2007

 Move conditional directives to a separate manual.

 Indicate the adminpath now is configured via the all prefix.

 Documented the xrd wan network and protocol directive option.

 Indicate that the xrootd export directive is configured via the all prefix

and accepts oss options.

01 October 2007

 Document the locate option of the redirect directive.

01 January 2008

 Remove references to olbd.

01 February 2008

 General clean-up.

11 April 2008

 Document staging (‘s’) monitor record.

29 May 2008

 Document the xrootd async nosf option.

21 July 2008

 Document the xrd network [no]dnr option.

 Document the xrd async minsfsz option.

6 March 2009

 Document the xrootd monitor stage option.

22 June 2009

 Document the xrd.report directive.

Configuration Documentation Changes

30-March-2022 XRootD Configuration 143

7 July 2009

 Document the mpxstats command for monitoring.

 Document the summary variables.



17 March 2010

 Document the timeout hail and kill options.

 Document the pid file creation and the pidpath directive.

8 March 2011

 Document the –s command line option.

 Minor editorial changes.

24 May 2011

 Document the auth option in the xrootd.monitor directive.

31 May 2011

 Change the xrootd.chksum directive to support native checksums.

Additional wording added explaining native checksums.

29 June 2011

 Document the rbuff and redir options on the xrootd.monitor directive

to support redirection monitoring.

27 September 2011

 Document the io flush option on the xrootd.monitor directive.

-------------- Release 3.1.0

10 October 2011

 Document the iov, migr, and purge options on the xrootd.monitor

directive.

2 November 2011

 Update documentation on the xrootd.redirect directive. It now accepts

additional file operations (chksum and trunc), open targets (previously

undocumented feature), and ENOENT targets.

Documentation Changes Configuration

144 XRootD Configuration 30-March-2022

3 December 2011

 Remove the migr, purge and stage options from the xrootd.monitor

directive. These have been moved to the frm.all.monitor directive.

 Document the new ident option on the xrootd.monitor directive.

12 December 2011

 Document the rnums option for the xrootd.monitor directive.

-------------- Release 3.2.0

-------------- Release 3.2.1

-------------- Release 3.2.2

-------------- Release 3.2.3

-------------- Release 3.2.4

21 September 2012

 Document the fstat option for the xrootd.monitor directive.

 Remove the rootd configuration section.

-------------- Release 3.2.5

22 October 2012

 Document the –S command line option and the all.sitename directive

for specifying a monitoring site name.

-------------- Release 3.2.6

-------------- Release 3.2.7

15 December 2012

 Change the fstat sdv option to fstat ssq in the xrootd.monitor directive.

-------------- Release 3.3.0

-------------- Release 3.3.1

-------------- Release 3.3.2

-------------- Release 3.3.3

-------------- Release 3.3.4

-------------- Release 3.3.5

-------------- Release 3.3.6

Configuration Documentation Changes

30-March-2022 XRootD Configuration 145

11 February 2013

 Enhance the fslib directive to allow one to easily wrap one library with

another.

23 February 2013 (IPV6 Introduction)

 Document the –I command line option.

 Document the cache option in the xrd.network directive.

12 August 2013

 Document the extended –k, –l and –z command line options.

 Document exported environment variables.

 Document the environment information file contents.

 General clean-up and better explanations.

2 December 2013

 Document the xrootd.diglib directive.

8 January 2014

 Document the routes option on the xrd.network directive.

 Document enhanced xrootd.redirect directive that can distinguish

between public and private IP addresses.

18 February 2014

 Restrict the routes option on the xrd.network directive to prohibit auto-

discovery of interface addresses as this may lead to choosing the wrong

addresses.

27 March 2014

 Document how to enable HTTP and HTTPS protocols.

 Redesign the routes option on the xrd.network directive to cover the

most common case.

6 August 2014

 Document the core option in the xrd.sched directive.

 Document how to export object identifier names via the all.export

directive.

Documentation Changes Configuration

146 XRootD Configuration 30-March-2022

8 September 2014

 Document that TCP keepalive is now the default setting.

 Add a nokeepalive option and a kaparms option to the xrd.network

directive.

 Indicate the use option in xrd.network accepts one or two interface

names.

 Minor corrections to HTTP section.

 Document the http.mapfile, http.staticredir, http.staticpreload, and the

http.trace directives.

27 September 2014

 Document multiple checksum support via the xrootd.chksum directive.

 Document the default option on the xrootd.seclib directive.

 Document the –L command line option.

26 November 2014

 Document the version option in the xrootd.fslib directive.

10 February 2015

 Document how to pass command line arguments to plug-ins.

 Document how to enable digFS but prevent its use until needed.

25 November 2015

 Explain the side-effects of the –s command line option on the placement

of the environmental file.

15 April 2016

 Document log file plug-ins.

20 June 2016

 Document the cse parameter for logging plug-ins.

 Document the xrd.network [no]rpipa option.

10 March 2017

 Correct http.mapfile directive (it’s really gridmap).

20 May 2017

 Document the xrootd.fsoverload directive.

Configuration Documentation Changes

30-March-2022 XRootD Configuration 147

27 October 2017

 Document the http.header2cgi directive.

19 December 2018

 Document the xrd.tls and the xrootd.tls directives.

31 May 2019

 Document the xrd.tlsca directive.

21 June 2019

 Document the dyndns option in the xrd.network directive.

 Remove all references to the wan option. It is no longer supported.

 Documented the xrd tls network, port, and protocol directive option.

 Correct spelling of xrootd.async segsize option (was segsz).

18 October 2019

 Document the preferred version of the xrootd.fslib directive.

21 December 2019

 Document the interaction between the dyndns and cache option of the

xrd.network directive.

31 March 2020

 Document the xrd.tlsciphers directive.

11 April 2020

 General cleanup with better descriptions.

 Document the ccm, pfc, and tcpmon options of the xrootd.monitor

directive.

 Document the xrd.tcpmonlib directive.

 Document the http.cipherfilter and http.exthandler directives.

14 April 2020

 Document the -a and -A command line options.

 Document the xrd.homepath and xrd.tcpmonlib directives.

Documentation Changes Configuration

148 XRootD Configuration 30-March-2022

24 April 2020

 Document the xrd.trace directive’s tls, tlsctx, tlsio, and tlssok options.

 Document the xrd.tlsca refresh option.

 Document the detail and cache options of the xrd.tls directive.

 Document the http.httpsmode directive.

28 April 2020

 Remove the xrd.tls directive’s cache option.

 Document the xrd.tlsca directive’s crlcheck and [no]proxies options.

 Document changes in the http.httpsmode directive where enable has

changed to manual.

 Re-factor the http protocol section and describe the deprecated

directives.

 Document how the TLS session cache has, by default, turned off.

 Document the xrootd.tlsreuse directive.

5 May 2020

 Add directives by category for xrd and xrootd section.

 Cleanup HTTP section.

23 July 2020

 Remove documentation of the xrootd.tlsreuse directive.

 Add documentation for the http.tlsreuse directive.

20 August 2020

 Document the xrootd.monitor directive triple dot, fbuff and gbuff

parameters.

 Document that the xrootd.monitor directive dest parameter is now

optional.

 Add documentation for the xrootd.mongstream directive.

29 December 2020

 Document the +port option of the xrd.protocol directive.

6 January 2021

 Add admonition that using an external checksum agent via the

xrootd.chksum directive disables returning checksums in a directory

listing.

Configuration Documentation Changes

30-March-2022 XRootD Configuration 149

16 March 2021

 Document the pgcserrs, pgread, and pgwrite options of the

xrootd.trace directive.

13 June 2021

 Document the auth, fsaio and fsio options of the xrootd.trace directive.

 Remove the pgread, and pgwrite options of the xrootd.trace directive.

 Correct minsz (should be minsize) option of the xrootd.trace directive.

30 July 2021

 Document that crc32c, is a natively supported checksum.

2 August 2021

 Document the xrootd.bindif directive.

22 November 2021

 Document the xrootd.pmark directive.

 Document the xrootd.redirect directive’s client option.

9 December 2021

 Document the nocache option of the xrootd.async directive.

10 March 2022

 Document the required and compatNameGeneration option of the

http.gridmap directive.

20 March 2022

 Document the tpc monitoring option on the xrootd.mongstream and

xrootd.monitor directives.

30 March 2022

 Add origin ffdest option and remove [no]duplex option from the

xrootd.pmark directive.

