

Authentication & Access Control

Configuration Reference

4-December-2023

Release 5.6.x

Gerardo Ganis, CERN

Andreas-Joachim Peters, CERN

Andrew Hanushevsky, SLAC

ii 4-December-2023 sec & acc Configuration

©2005-2023 by the Board of Trustees of the Leland Stanford, Jr., University

All Rights Reserved

Produced under contract DE-AC02-76-SFO0515 with the Department of Energy
This code is open-sourced under a GNU Lesser General Public license.

For LGPL terms and conditions see http://www.gnu.org/licenses/

http://www.gnu.org/licenses/

Security Contents

sec &acc Configuration 4-December-2023 iii

1 Introduction.. 5

1.1 Client/Server Authentication ...6

1.2 Server Authorization ..7

2 Authentication Configuration .. 9

2.1 entitylib ...9

2.2 level ...10

2.2.1 Verification performed by level...13

2.3 protbind ...15

2.5 protocol ..17

2.5.1 gsi protocol ..19
Backward Compatibility .. 27
2.5.1.1 The authz plug-in .. 29

2.5.1.1.1 Implementing an authz plug-in .. 30
2.5.1.2 The gmap plug-in .. 32

2.5.1.2.1 Implementing a gmap plug-in... 32
2.5.1.3 The voms plug-in .. 33

2.5.1.3.1 Implementing a voms plug-in ... 35
2.5.1.4 Configuring GSI Security.. 36

2.5.1.4.1 Server side ... 36
2.5.1.4.2 Client side .. 37

2.5.1.5 xrdgsiproxy ... 41

2.5.2 host protocol ..43

2.5.3 krb5 protocol ..45
2.5.3.1 Configuring Kerberos V Security... 46

2.5.4 pwd protocol..47
2.5.4.1 Configuring pwd Security.. 50

2.5.4.1.1 Server side ... 50
2.5.4.1.2 Client side .. 50

2.5.4.2 xrdpwdadmin... 53

2.5.5 sss protocol ..57
2.5.5.1 Proxy Authentication ... 60
2.5.5.2 Configuring sss Security ... 61

2.5.5.2.1 Server side ... 61
2.5.5.2.2 Client side .. 61

2.5.5.3 xrdsssadmin .. 63

2.5.6 unix protocol ..67

2.5.7 ztn protocol ..69
2.5.7.1 Default token discovery mechanism and augmentation ... 71

2.6 protparm ..73

3 Default Authorization Configuration ... 75

3.1 audit ...75

3.2 authdb..76

3.3 authrefresh ..77

3.4 encoding ..78

Contents Configuration

iv 4-December-2023 sec & acc Configuration

3.5 gidlifetime ...79

3.6 gidretran ..80

3.7 nisdomain..81

3.8 pgo ...82

4 Authorization Database File ... 83

4.1 Authorization Database Record Definition ..84

4.1.1 Defining Special Compound ID’s for s and x rules ...87

4.1.2 Default Privileges...89

4.1.3 User Fungible Capabilities...89

5 Document Change History.. 91

Security Authentication

sec &acc Configuration 4-December-2023 5

1 Introduction

This document describes the configuration of the security and the default access

control components of the extended root daemon (xrootd). Configuration directives

use a special prefix for each component that allows you to use a single configuration

file. The prefixes are shown in the following table.

Component Purpose
sec Security authentication
acc Access control (i.e., authorization)

Configuration directives for each component come from a configuration file

specified when xrootd is started (see the –c option xrootd option).

Records that do not start with a recognized identifier are ignored. This includes blank

record and comment lines (i.e., lines starting with a pound sign, #). This guide

documents the acc and sec configuration directives. Other directives are

documented in supplemental guide specific to the component they deal with.

Refer to the manual “Configuration File Syntax” on how to specify and use

conditional directives and set variables. These features are indispensable for

complex configuration files usually encountered in large installations.

By default, security and access control features are disabled. These features can be

enabled with the following xrootd and ofs directives:

Directive Purpose
xrootd.fslib Load the shared library implementing the ofs and

acc components.
xrootd.seclib Load the shared library implementing the sec

(authentication) component.
ofs.authlib Load the shared library implementing a special acc

component.
ofs.authorize Enables access control, acc component.

Authentication Security

6 4-December-2023 sec & acc Configuration

1.1 Client/Server Authentication

The authentication component is structured as a highly versatile multi-protocol

suite. In order to accomplish this task, it is organized into a set of shared libraries:

Shared Library Purpose
libXrdSec.so Protocol manager and host-based authentication.
libXrdSecgsi.so Dynamically loadable GSI authentication.
libXrdSeckrb5.so Dynamically loadable Kerberos V authentication.
libXrdSecpwd.so Dynamically loadable password-based authentication.
libXrdSecsss.so Dynamically loadable simple shared secret authentication.
libXrdSecunix.so Dynamically loadable unix-based authentication.
LibXrdSecxxxx.so Dynamically loadable xxxx authentication protocol.

This means that libXrdSec.so must be available since it is needed to boot-strap

additional protocols. The corresponding shared library must be available for each

requested protocol (e.g., krb5).

For servers, the location of libXrdSec.so is specified using the xroot seclib directive

(see the “xrd & xrootd Configuration Guide”). Additional libraries are specified

using the sec.protocol directive documented in this guide.

For clients, the task of deploying shared libraries is more problematic because

library placement and location is not immediately obvious. The same rules apply;

libXrdSec.so and any additional protocol libraries must be available. Typically,

these libraries should be placed in one of the directories listed in the client’s

LD_LIBRARY_PATH environmental variable or installed in the default loader’s

search path. Alternatively, they can be placed in a well-known linker/loader location

(e.g., /usr/local/lib).

The client will load libraries, as available, compatible with the security configuration

defined for the server. Thus, the server controls what protocols the client will use, if

any. While this potentially simplifies security administration, it does complicate the

client-side environment. This is because the client may be potentially running

multiple protocols at the same time, depending on what set of servers the client

wants to use. Generally, however, this is transparent to the client application.

Security Authentication

sec &acc Configuration 4-December-2023 7

1.2 Server Authorization

The default authorization component is already built into xrootd and needs only to

be activated using the ofs.authorize directive. If you use the default authorization

scheme, you must also create an authorization file that lists client capabilities. The

file is specified by the acc.authdb directive, Procedures must be developed to

properly share this file with all of the servers that rely on it to provide cohesive

access control. Fortunately, authorization is only a server-side issue.

Other authorization schemes may be used with xrootd. A specific scheme is

implemented as a plug-in. The shared library containing the implementation is then

specified using the ofs.authlib directive.

In a clustered environment, authorization should be enabled on all actual data

servers since clients might bypass a redirector and communicate directly with a data

server. Consider enabling authorization at the redirector level only if you need to

control file requests. Since a request for a file does not implicitly allow actual access

to file data; authorization at the redirector level generally does not enhance security

but may add significant overhead.

Security Authentication

sec &acc Configuration 4-December-2023 9

2 Authentication Configuration

2.1 entitylib

sec.entitylib [++] path [parms]

Function

Specify the location of the client entity decryption post processor.

Parameters

++ The specified plug-in should stack on top of the existing plug-in or default. A

stacked plug-in cannot be overridden by a subsequent directive.

path The absolute path to the shared library that contains an implementation of the

post processor plug-in.

parms Optional parameters to be passed to the post processor plug-in

Defaults

By default no additional post processing occurs after the client is

authenticated.

Notes

1) The entity prost processor interface is defined in the XrdSecEntityPin.hh

include file. Refer to this file on how to create a custom post processor.

2) Even though authentication has succeeded, the post processor may reject

the authenticated entity. When authentication fails he message returned

to the client, and perhaps printed in the log, may be sufficient to resolve

which part of the authentication process actually failed.

Example
 sec.entitylib /opt/xrootd/lib/libEntityProc.so

Authentication Security

10 4-December-2023 sec & acc Configuration

2.2 level

sec.level {all | local | remote] [relaxed] level [force]

level: none | compatible | standard | intense | pedantic

Function

Specify the request verification level.

Parameters

all The verification level applies to all clients. This is the default.

local The verification level applies only to clients in the server’s DNS domain.

remote

The verification level applies only to clients outside the server’s DNS domain.

relaxed

applies the specified level of verification to clients that support request

verification. Old clients that don’t support verification are not included. This

option is meant to allow a non-disruptive client software upgrade path.

level Is the verification level:

none requests are not to be verified. This is the default unless the level

directive specifies otherwise.

compatible

 verifies only potentially destructive requests (i.e. those that modify file

data or metadata. This provides backward compatibility for old clients

that only require read-only access to data.

standard

 includes compatible verification plus key requests that access data.

intense

includes standard verification plus additional requests that access

metadata.

pedantic

 verifies all requests.

Security Authentication

sec &acc Configuration 4-December-2023 11

force requires verification even for authentication protocols that do not support

encryption. Normally, when a client authenticates with a protocol that does

not support generic encryption, verification is not employed. This option is

meant for debugging purposes as it does not provide enhanced security.

Defaults

sec.level all none

Notes

1) Request verification uses cryptographic signing to ensure that a request

has been sent by the client that the server has previously authenticated.

2) Request verification requires that the authentication protocol used to

authenticate a client supports generic encryption. Currently, only gsi

authentication protocol supports generic encryption.

3) A client is considered to be in the same DNS domain when all DNS name

components, other than the first one, match corresponding name

components of the server.

4) The following section specifies the verification used for each request by

specified level other than none.

Example
 sec.level local none

 sec.level remote standard

Security Authentication

sec &acc Configuration 4-December-2023 13

2.2.1 Verification performed by level

Operation Compatible Standard Intense Pedantic

auth --- --- --- ---

bind --- --- verified verified

chmod verified verified verified verified

chkpoint --- --- verified verified

close --- --- verified verified

dirlist --- --- --- verified

endsess --- --- verified verified

fattr verified verified verified verified

gpfile verified verified verified verified

locate --- --- --- verified

login --- --- --- ---

mkdir --- verified verified verified

mv verified verified verified verified

open read --- verified verified verified

open Write verified verified verified verified

pgread --- --- --- verified

pgwrite --- --- verified verified
ping --- --- --- ---

prepare --- --- --- verified

protocol --- --- --- ---

query --- --- --- verified

query special --- --- verified verified

read --- --- --- verified

readv --- --- --- verified

rm verified verified verified verified

rmdir verified verified verified verified

set --- --- verified verified

set special verified verified verified verified

sigver --- --- --- ---

stat --- --- --- verified

statx --- --- --- verified

sync --- --- --- verified

truncate verified verified verified verified

write --- --- verified verified

Security Authentication

sec &acc Configuration 4-December-2023 15

2.3 protbind

sec.protbind hostpat { none | [only] protocols }

hostpat: prefix[*][suffix] | [prefix][*]suffix | localhost

Function

Bind a set of protocols to one or more hosts.

Parameters

hostpat

The hostname pattern to be used for matching host names. A pattern is a

standard DNS name with an optional single asterisk somewhere in the

specification. All of the characters prior to the asterisk (i.e., prefix) must match

the left-most characters of the host name and all of the characters after the

asterisk (i.e., suffix) must match the right-most characters of the host name. If

the hostpat does not contain an asterisk, the all of the characters must match.

none Indicates that incoming clients from hosts matching hostpat need not supply

any credentials.

only Indicates that incoming clients from hosts matching hostpat must supply

credentials using one of the protocols that follow.

protocols

One or more blank-separated protocol ids that are to be bound to the host.

Each protocol id must have been previously defined with the protocol

directive.

localhost

 substitutes the DNS registered name of the current host.

Authentication Security

16 4-December-2023 sec & acc Configuration

Defaults

All of the defined protocols are presented to each connecting client as

acceptable authentication protocols. See the notes on how to change the

default.

Notes

1) The protbind directive allows you to determine which authentication

protocols are valid from which host. Alternatively, the protbind directive

can be used to lessen authentication requirements from certain hosts (e.g.,

those behind a firewall vs. the ones outside a firewall).

2) Incoming clients from hosts bound to none are not asked to supply

credentials.

3) Order is important. Host matching occurs in reverse order of specification.

Specify the most general hostpat first and the least general, last.

4) If the hostpat is a single asterisk, then this defines the actual default for all

unbound hosts.

5) The protbind directive is meant to lessen the security requirements on

certain hosts. Unless only is specified, it does not restrict a host from

using any defined security protocol, even if that protocol is not presented

to the host as an option.

6) Because host protocol is the least restrictive authentication mechanism,

binding the built-in host protocol to a host makes any other bindings to

the host superfluous.

Example
 sec.protbind bronco*slac.stanford.edu host

Security Authentication

sec &acc Configuration 4-December-2023 17

2.5 protocol

sec.protocol [libpath] protid [parms]

Function

Define the characteristics of an authentication protocol.

Parameters

libpath

The absolute path where the protocol shared library exists. If an absolute path

is not specified, the library must be on the search path defined by the loader’s

search path or the LD_LIBRARY_PATH environmental variable.

protid The unique 1- to 7-character protocol identifier.

parms The parameters required by the protocol to operate successfully. The

parameters are protocol dependent. The notes and subsequent sections

describe the parameters needed for various protocols. The parms can also be

specified with the protparm directive.

Defaults

There are no defaults. Each protocol must be appropriately defined in order

for it to be used.

Notes

1) Each supported protocol has a 1- to 4-characterunique identifier, the

protid. The sec component currently comes with support for these

protocols:

o host authenticates a user by originating host name only,

o gsi authenticates a user using GSI protocol,

o krb5 authenticates a user using Kerberos V protocol, and

o pwd authenticates a user using a password-based protocol

o sss authenticates a user using a simple shared secret protocol

o unix authenticates using the Unix login name and group name

Other protocols may be supported by an installation. Refer to the “xrootd

Developer’s Reference” on how to add new protocol support.

2) Even though the host protocol is built-in, it will not be used unless

specified with a protocol directive.

Authentication Security

18 4-December-2023 sec & acc Configuration

3) Because host protocol is the least restrictive authentication mechanism;

allowing its unbound use (see the protbind directive) makes all other

protocols superfluous. A warning message is issued if you define the host

protocol but do not restrict its use to certain hosts.

4) The following sections describe the required parameters, parms, for each

protocol requiring configuration (host protocol does not need any

parameters).

5) Warning: host and unix protocols do not provide any significant level of

security and should only be used in instances where security violations do

not matter.

Example
 sec.protocol host

Security Authentication

sec &acc Configuration 4-December-2023 19

2.5.1 gsi protocol

sec.protocol [libpath] gsi [basic] [authz] [gmap] [voms]

basic: [-ca:{noverify|verifyss|verify}]

 [-cert:file] [-certdir:dir]

 [-cipher:ciphers]

 [-crl:{ignore|try|use[,updt]|require[,updt]}

 [-crldir:dir]

 [-crlext:extension] [-crlrefresh:period]

 [-d:level] [-dlgpxy:{ignore|request}]

 [-exppxy:{template | =creds}]

 [-key:file] [-md:mds]

 [-showdn:{true|false}]

 [-trustdns:{true|false}]

authz: [-authzfun:file] [-authzfunparms:parms]

 [-authzpxy:{cred|endor}={fullchain|lastcert}]

 [-authzto:to] [-authzcall:{always|novoms}]

gmap: [-gmapfun:file] [-gmapfunparms:parms]

 [-gmapopt:{nomap[,usedn]|trymap[,usedn]|usemap}]

 [-gmapto:to] [-gridmap:file]

voms: [-vomsat:{ignore|extract|require}]

 [-vomsfun:{file|default}]

 [-vomsfunparms:parms]

Authentication Security

20 4-December-2023 sec & acc Configuration

Function

Define the characteristics of the gsi authentication protocol.

Parameters

libpath

The absolute directory path where the protocol shared library exists. If an

absolute path is not specified, the library must be on the search path defined

by loader or the LD_LIBRARY_PATH environmental variable.

basic Options

-ca:{noverify|verifyss|verify}

Defines the CA verification level:

noverify do not verify;

verifyss verify if self-signed, issuing a warning if not;

verify always verify the CA in the chain, failing when not possible.

Default is verifyss.

-cert:file

Specifies an alternative path for the file containing the certificate to be used

by the server; the path leading to file can be absolute or relative to the place

where the daemon is started; ‘~/’ is expanded to $HOME.

Default: /etc/grid-security/xrd/xrdcert.pem

-certdir:dir

Specifies an alternative directory path for trusted Certificate Authority

certificates; the path indicated by dir can be absolute or relative to the place

where the daemon is started; ‘~/’ is expanded to $HOME.

Default: /etc/grid-security/certificates

-cipher:ciphers

Specifies a colon-separated list of ciphers to be used for the session symmetric

key. Default is “aes-128-cbc:bf-cbc:des-ede3-cbc” (OpenSSL naming

convention).

Security Authentication

sec &acc Configuration 4-December-2023 21

-crl: {ignore|try|use[,updt]|require[,updt]}

Defines the type of check to be performed on CRLs:

ignore ignore any CRL information for the CA being used for certificate

chain verification;

try try to use CRL if available; if the CRL certificate is missing for a

given CA, the related CRL is assumed to be empty;

use use CRL for any trusted CA, but do not fail if the CRL certificate is

not up-to-date;

require require an up-to-date CRL for each CA;

updt attempt to download missing or expired CRLs. Unless updt is

specified, no attempt is made to update the CRLs.

Default is try.

-crldir:dir

Specifies an alternative directory path for CRL certificates; the path indicated

by dir can be absolute or relative to the place where the daemon is started;

‘~/’ is expanded to $HOME. By the default CRLs are searched for in the same

path as for CA certificates.

-crlext:extension

Specifies an alternative default extension for CRL files. Default is “.r0”.

-crlrefresh:period

Controls period for refreshing the CRL information; value in seconds.

Negative values disable the automatic refresh. Default one day (86400 secs).

-d:level

Sets the verbosity level for this module to level; the level can be set to 1 (low),

2 (medium) or 3 (high or dump). Invoking xrootd with the verbose option -d

sets the internal verbosity for this module to 1.

Default is 0.

Authentication Security

22 4-December-2023 sec & acc Configuration

-dlgpxy: {ignore|request}

Specify if the server should request a delegated proxy from the client:

ignore do not ask the client for a delegated proxy certificate;

request ask the client for a delegated proxy; the result depends on the

setting of the client’s XrdSecGSIDELEGPXY environment variable.

Default is ignore.

-exppxy:template or exppxy:=creds

Specifies the exported location of the delegated proxy certificate when the

dlgpxy switch enables it. Specifying a template writes the certificate to a file

whose name corresponds to the template specification. Specifying =creds

makes the certificate available via the XrdSecEntity.creds with the length set

in the XrdSecEntity.credslen field.

A template can contain one or more of the following place-holders which are

resolved dynamically:

<user> client username;

<uid> client user ID;

<host> client host name;

<vorg> client virtual organization;

<group> client group.

Default is /tmp/x509up_u<uid>.

-key:file

Specifies an alternative path for the file containing the private key associated

with the server certificate (server must have read access to the file) ; the path

leading to file can be absolute or relative to the place where the daemon is

started; ‘~/’ is expanded to $HOME.

Default: /etc/grid-security/xrd/xrdkey.pem

-md:mds

Specifies a colon-separated list of message digests to be used for integrity

checks and signatures. Default is sha1:md5 (OpenSSL naming convention).

-showdn:{true|false}

Specifies whether or not to display the certificate’s subject distinguished

name along with the associated entity name when the entity name differs

from the subject DN. The default is false.

Security Authentication

sec &acc Configuration 4-December-2023 23

-trustdns:{true|false}

Specifies whether or not to use the Domain Name System (DNS) to validate

hostnames in certificates. This may need to occur if the certificate does not

have a SAN extension or the hostname is an alias. See the usage notes for

admonitions. The default is false.

authz Options

-authzcall: {always|novoms}

specifies when the authzfun plug-in should be called:

always the plug-in is always called;

novoms the plug-in is only called when the vomsfun plug-in fails.

Default is always and is the case when no vomsfun plug-in exists.

-authzfun:file

file is the full path of the shared library containing a plug-in to be called after

a successful authentication handshake to complete the identity information.

-authzfunparms:parms

parms are the parameters to be used to initialize the plug-in defined by

authzfun.

-authzpxy: {cred|endor}={fullchain|lastcert}

specifies how the authzfun proxy information is exported in the

XrdSecEntity structure:

cred place in the XrdSecEntity.creds field;

endor place in the XrdSecEntity.endorsements field;

fullchain use the full proxy chain (CA, certificate, proxies)

lastcert use only the last user proxy certificate.

Default is to not export proxy information.

-authzto:to

Expiration time in seconds for entries in the cache associated with the

authorization function defined by authzfun. Default is 43200 seconds, i.e. 12

hours.

Authentication Security

24 4-December-2023 sec & acc Configuration

gmap Options

-gmapfun:file

file is the full path of the shared library containing a plug-in function to be

used to map DNs to usernames in addition to the grid-map file.

-gmapfunparms:parms

Defines the parameters to be used to initialize the plug-in mapping function

defined by gmapfun; multiple parameters are ‘|’-separated. See the dedicated

section below for details.

-gmapopt: {nomap[,usedn]|trymap[,usedn]|usemap}

Specify how to handle the grid-map file.

nomap do not map; use the hash of the client’s DN as the user identifier

(username);

trymap try to map the DN but if unsuccessful use the hash of the client’s

DN as the user identifier (username);

usemap require mapping (fail at initialization if file is missing or not

readable and fail if a DN mapping cannot be found);

usedn use the client DN as the user identifier instead of a hash.

Default is trymap.

-gmapto:to

Expiration time in seconds for entries in the cache associated with the grid-

map file or the mapping function defined by gmapfun.

Default is -1, i.e. no expiration.

-gridmap:file

Specify an alternative location for the grid-map to be searched for if gmapopt

is non null.

 Default is /etc/grid-security/grid-mapfile.

Security Authentication

sec &acc Configuration 4-December-2023 25

voms Options

vomsat: {ignore|extract|require}

specify how to handle VOMS attributes using the vomsfun plug-in:

ignore ignore, i.e. do not look for VOMS extensions (ignore is changed

to require when -vomsfun is specified);

extract extract all attributes and, if successful, fill in XrdSecEntity.vorg,

XrdSecEntity.role, XrdSecEntity.grps fields, setting

XrdSecEntity.endorsements to the full attribute list. Do not fail

if attributes cannot be extracted;

require like extract but fail if the attributes are missing or cannot be

extracted.

 Default is ignore.

vomsfun: {file|default}

 specifies the location of the voms plug-in:

file is the full path if a shared library containing a plug-in function

to be called to extract information from the VOMS certificate

extension;

default use the default extractor that comes with the gsi package.

Default is default when the extract or require option is in effect.

vomsfunparms:parms

parms are the parameters to be used to initialize the plug-in VOMS attributes

extraction function defined by vomsfun option. Multiple parameters are ‘|’-

separated.

Defaults

See description of each single option.

Authentication Security

26 4-December-2023 sec & acc Configuration

Notes

1) Servers usually use a dedicated service-certificate whose CN is of the form

CN = service/Fully.Qualified.Hostname

 e.g. CN = xrd/pcepsft43.cern.ch

However, this is no longer sufficient as the current standard dictates that a

server’s host certificate should have a SAN extension containing the actual

full qualified host name regardless of what the CN contains.

2) The -crlext option allows you to specify the CRL certificate files extension

as using a specific extension speeds the loading of certificates. If the

extension or the corresponding file is missing, the whole set of files in the

directory is tested to find the relevant CRL files; which is a slow process.

3) The order in which various plug-ins are applied is:

a. The gmap plug-in if enabled by the -gmapfun option. Otherwise,

gridmap file processing is applied if enabled by the -gmapopt option.

b. The VOMS plug-in if enabled by the -vomsfun option. Otherwise, the

built-in VOMS extraction is used if enabled by the -vomsat option.

c. The authz plug-in if enabled by the -authzfun and -authzcall options.

4) The -trustdns option should only be used when needing to deal with

certificates without a SAN extension or when the certificate contains an

alias of the real hostname. These kinds of certificates are now considered

to be malformed. Enabling DNS usage is a security issue as a DNS can be

poisoned with false entries allowing a presented certificate to look as if it

belongs to the host being contacted; when in fact it is a malicious

intervening host. Avoid enabling DNS whenever possible.

5) For developers only: both the gmap and authz plug-ins support the special

option useglobals. This option is detected and used before the plug-in is

actually loaded and controls the way the symbols in the plug-in library

are made available to subsequent libraries, e.g. the ones loaded by the

plug-in itself. If useglobals is added to the option list the plug-in symbols

are made globally available, which means that dlopen is called with the

flag RTLD_GLOBAL set. The useglobals option is removed from the

option list passed to the initialization call.

Example
 sec.protocol gsi –crl:3

Security Authentication

sec &acc Configuration 4-December-2023 27

Backward Compatibility

Starting in Release 5, the -authzpxy, -ca, -crl, -dlgpxt, -gmapopt, and -vomsat

options were changed to accept meaningful words as parameters. To achieve

backward compatibility, the original numeric values are still accepted. The following

tables show how each numeric value maps onto a descriptive argument. Be aware

that in previous releases invalid numeric arguments were usually silently ignored or

converted to something more acceptable. Starting in Release 5, invalid numeric

arguments are flagged as invalid and the substituted value (as a specification) is

displayed.

-authzpxy -ca -crl

Value Specification Value Specification Value Specification

1 creds=fullchain 0 noverify 0 ignore

2 endor=fullchain 1 verifyss 1 try

11 creds=lastcert 2 verify 2 use

12 endor=lastcert 3 require

 12 try,updt

 13 require,updt

-dlgpxy -gmapopt -vomsat

Value Specification Value Specification Value Specification

0 ignore 0 nomap 0 ignore

1 request 1 trymap 1 extract

 2 usemap 2 require

 10 nomap,usedn

 11 trymap,usedn

Backward Compatibility Changes

In Release 5, the built-in VOMS extractor is no longer available as it is not secure

and may not correctly parse certain VOMS attributes. The default -vomsat value

consequently changed from extract to ignore. This means that to extract VOMS

attributes either -vomsfun must be specified or -vomsat set to extract or require.

Security Authentication

sec &acc Configuration 4-December-2023 29

2.5.1.1 The authz plug-in

The GSI package comes with a general-purpose authz plug-in implemented in the

libXrdSecgsiAuthzVO.so shared library. It can be used for simple mapping of

virtual organization (VO) names to usernames or groups. It also, by default, trims

the un-mapped usernames to the base distinguished name contained in the

certificate. These actions are controlled by the authzfunparms parameter. The

parameter is specified in the form of a CGI string (i.e., keyword=value with each pair

separated by an ampersand (&). The parameters are as follows:

-authzfunparms: [keyword=value[&keyword=value[. . .]]]

keyword=value: [debug=1] [valido=voname[,voname[,…]]

 [vo2grp=gspec] [vo2usr=uspec]

where:

debug=1

Prints additional information involved in the mapping and should only be

used for debugging purposes.

valido=vlist

vlist is a comma-separated list of VO names that are acceptable. If not

specified, all virtual organizations are accepted. Otherwise, failure is returned

if the VO is not in the list.

vo2grp=gspec

gspec specifies how the VO name is to be converted into a group name.

Specify for gspec a printf-like format string with a single %s. The VO name is

inserted where the %s occurs. To make the group name equal to the VO

name, specify only %s (i.e. vo2grp=%s). If vo2grp is not specified, the group

name is unchanged.

Authentication Security

30 4-December-2023 sec & acc Configuration

vo2usr=uspec

uspec specifies how the VO name is to be converted into a user name. Specify

for uspec a printf-like format string with a single %s. The VO name is inserted

where the %s occurs. To make the user name equal to the VO name, specify

only %s (i.e. vo2usr=%s). If vo2usr is not specified, then the user name comes

from distinguished name in the certificate (i.e. text after '/CN=') with spaces

turned into underscores and the VO name is not used. Specifying vo2usr=*

returns the user name as set by the gsi plug-in.

Notes

1) The AuthZ plug-in is called after the VOMS plug-in.

2) The AuthzVO plug-in is best used when gsi internal mapping is turned off.

Normally, this requires that you also specify ‘-gmapopt:10 -gmapto:0’

options.

Example
-gmapopt:10 -gmapto:0 -authzfun:libXrdAuthzVO.so \

-authzfunparms:valido=atlas,cms,vo2grp=us%s

The above example loads the AuthzVO plug-in. The parameters indicate that only

VO names of atlas and cms are valid. The cms VO name will be converted to a

group name of uscms and atlas VO will be converted to a group name of usatlas.

The user name comes from the distinguished name in the certificate.

2.5.1.1.1 Implementing an authz plug-in

The plug-in consists of three external functions loaded from the shared library

specified by the authzfun option. In addition to the main function, the plug-in

should contain a function defining the string to be used to key the result of the call,

and a function to initialize the plug-in. The three functions must all be declared as

'extern “C”'.

The initialization function, XrdSecgsiAuthzInit(), is called once at start-up. Then for

each authentication, the XrdSecgsiAuthzKey() function is called first and if

successful XrdSecgsiAuthzFun() is called to augment the XrdSecEntity object.

Security Authentication

sec &acc Configuration 4-December-2023 31

The initialization function has name and signature

int XrdSecgsiAuthzInit(const char *parms)

where parms is a string that was specified using the authzparms option.

This function should return <0 in case of failure or the positive format type of the

proxy chain expected by the main function:

0 raw, to be used with XrdCrypto tools

1 PEM base64 standard string

The key function has name and signature:

int XrdSecgsiAuthzKey(XrdSecEntity &entity, char **key)

entity is the XrdSecEntity as will be passed to XrdSecgsiAuthzFun(). The function

is should fill in *key with the key used to cache the result of the

XrdSecgsiAuthzFun() function and should return the length of the key. The key is

destroyed with delete [], so it must be allocated internally with new char[].

The main function has the following signature and name:

int XrdSecgsiAuthzFun(XrdSecEntity &entity)

entity is the XrdSecEntity object associated with the handshake on the server side.

On input entity contains:

 name holds the username, DN or DN hash according to the -gmapopt option;

 host holds the client hostname;

 creds or endorsements hold the proxy chain, as specified by the -putpxy

option. The proxy chain can be either in raw opaque or PEM base64 format (see

XrdSecgsiAuthzInit()).

This function should return

 0 on success

 <0 on error (implies authentication failure)

Authentication Security

32 4-December-2023 sec & acc Configuration

2.5.1.2 The gmap plug-in

The GSI package does not come with an external -gmapfun plug-in. Instead, it uses

an internal DN to username mapping function using a grid map file. The mapping

parameters are specified by -gmapopt and -gridmap options. This is sufficient for

simple sites with few users. More complicated sites should either implement their

own gmap plug-in or use a Virtual Organization Management System (VOMS) and

use the provided VOMS plug-in.

2.5.1.2.1 Implementing a gmap plug-in

This function can be used to integrate or replace the grid-map file. The function is

loaded as a plug-in from the shared library specified by the -gmapfun option. It

must be declared as extern “C” and must have the following name and signature

 extern “C” {

 char *XrdSecgsiGMAPFun(const char *DN, int now)

 {

 // DN is the user DN

 // now is the result of time(0)

 …

 char *name = new char[length];

 …

 return name;

 }}

The function is called once after loading with the parameters defined by the

gmapfunparms in the first argument (any ‘useglobals’ is removed; see below) and

now = 0 for initialization. Each parameter is separated by a vertical bar (‘|‘).

Subsequent calls pass the distinguished name and the function should return the

name to be used in an allocated new char[] array. Returning a nil pointer indicates

failure.

Working examples can be found in the source distribution in files

XrdSecgsiGMAPFunDN.cc and XrdSecgsiGMAPFunLDAP.cc

under src/XrdSecgsi.

Security Authentication

sec &acc Configuration 4-December-2023 33

2.5.1.3 The voms plug-in

A general-purpose multi-vo VOMS extraction plug-in is part of the gsi package. It is

implemented in the libXrdVoms.so shared library. Be aware that to use this plug-in

the libvomsapi.so shared library must be installed. This is a generally available

RPM from EPEL (for Linux see pkgs.org). The parameters are as follows:

-vomsfunparms: [option[|option[|option[…]]]

option: [dbg] [grpopt={usefirst | uselast | useall}]

 [grps=gname[,gname[,…]] [vos=vname[,vname[,…]]

 [gsiopts]

gsiopts: certfmt={pem | raw}

where:

dbg Prints additional information involved in the mapping and should only be

used for debugging purposes.

certfmt

 Specifies how the certificate should be passed to the plug-in. This option is

only relevant to the gsi plug-in. One of two formats may be specified:

pem the certificate is to be passed as a base64 standard string.

raw the certificate is to be passed as a binary string to be used with the

XrdCrypto tools.

grpopt

gropt specifies how to handle multiple group membership. Acceptable

groups may be restricted using the grps option. Otherwise, any group is

considered acceptable. Specify one of:

usefirst only the first acceptable group is used.

uselast only the last acceptable group is used.

useall all acceptable groups are used (the default).

https://pkgs.org/download/libvomsapi.so.1

Authentication Security

34 4-December-2023 sec & acc Configuration

grps each gname specifies an acceptable group name. Only these group names are

passed to the authorization framework. At least one listed group must be

found in a voms extension for the plug-in to return success. If the grps option

is not specified, all groups are accepted and the lack of any group presence

does not cause failure.

vos each vname specifies an acceptable Virtual Organization name. Only these

VO names are passed to the authorization framework. If the vos option is not

specified, then all virtual organization names are accepted. At least one

acceptable VO name must exist for the plug-in to return success.

Defaults

See description of each single option.

Notes

1) The gsi framework voms plug-in can be loaded by the gsi authentication

plug-in using the -vomsfun option or by http plug-in using the

http.secxtractor configuration directive.

2) The http plug-in uses https protocol to obtain client certificates for

authentication. The https protocol uses x509 certificate format which is

automatically accepted by the voms plug-in.

3) The gsi plug-in represents client certificates in raw binary format but is

capable of converting them to PEM format. The certfmt option allows you

to specify which format to use with the voms plug-in when using the

plug-in with gsi. Usually, the default is sufficient.

4) In the unlikely event that the XrdCrypto package is not installed, the plug-

in automatically requests a PEM format certificate.

5) For backward compatibility, the VOMS plug-in accepts the arcane, now

deprecated, version of the grpopt:

grpopt= select*10+which

 select is 0 (use all groups that are present, the default) or 1

(consider only those specified in the grps option).

 which is 0 (use the first acceptable one), 1 (use the last acceptable

one), or 2 (use all of the relevant groups, the default).

Security Authentication

sec &acc Configuration 4-December-2023 35

2.5.1.3.1 Implementing a voms plug-in

This function can be used to fill the VOMS-related content of the XrdSecEntity

structure for authorization purposes. The function is part of a set of two functions

loaded from the file specified by the -vomsfun option. In addition to the main

function, the plug-in should contain a function to initialize the plug-in.

The two functions must all be declared as 'extern “C”'.

The initialization function has name and signature

int XrdSecgsiVOMSInit(const char *parms)

where parms is a string that was specified using the -vomsparms option.

This function should return <0 in case of failure or the positive format type of the

proxy chain expected by the main function:

0 raw, to be used with XrdCrypto tools

1 PEM base64 standard string

The main function has the following signature and name:

int XrdSecgsiVOMSFun(XrdSecEntity &entity)

where entity is the XrdSecEntity object associated with the handshake on the server

side. On input entity contains:

- in name the username, DN or DN hash according to the GMAP option;

- in host the client hostname;

- in creds the proxy chain .

The proxy chain can be either in raw opaque or PEM base64 format as requested by

the XrdSecgsiVOMSInit() function.

This function returns

0 on success

<0 on error (implies authentication failure)

A working example can be found in the source distribution in the file

XrdSecgsiVOMSFunLite.cc

under src/XrdSecgsi .

Authentication Security

36 4-December-2023 sec & acc Configuration

2.5.1.4 Configuring GSI Security

2.5.1.4.1 Server side

Follow these steps to configure GSI protocol for xrootd:

1. Locate a valid certificate to be used by the server. This should be a host

certificate with a valid SAN extension that specifies the fully qualified hostname.

You can check if the certificate has a valid SAN extension with

openssl x509 -text -in cert-pem-file | grep DNS:

2. Locate the directory path with the certificates for the trusted CAs. File names

holding CA certificates are of the type <subject_hash>.0; for example, for the

CERN CA, the certificate file is “1d879c6c.0”.

3. If strong requirements about the CRLs have to be applied, locate the CRL

certificate files; these are usually located in the same directory as the CA

certificates, have the same name but extension “.r0”; for the example above, the

CRL file is “1d879c6c.r0”.

4. If some non-default values are found at points 1-3, add the relevant parameters

in the sec.protocol directive of the configuration file.

Security Authentication

sec &acc Configuration 4-December-2023 37

2.5.1.4.2 Client side

The default settings should be adequate for most of the use cases. Exceptions to the

rule may be the location of the CA certificates and related CRLs, and the strength of

the requirement about CRLs.

The following environment variables are provided to change the defaults on the

client side:

XrdSecDEBUG

verbose level; the level can be set to 1 (low), 2 (medium) or 3 (high or dump)

 Default is 0.

XrdSecGSIUSERCERT or X509_USER_CERT

alternative full path to the file containing the certificate to be used by the

client; the path can be absolute or relative to the place where the daemon is

started; ‘~/’ is expanded to $HOME. Default: $HOME/.globus/usercert.pem

XrdSecGSIUSERKEY or X509_USER_KEY

alternative full path to the file containing the private key associated with

client certificate; the path can be absolute or relative to the place where the

daemon is started; ‘~/’ is expanded to $HOME. Default:

$HOME/.globus/userkey.pem

XrdSecGSIUSERPROXY or X509_USER_PROXY

alternative full path to the file containing the user proxy certificate to be used

by the client; the path can be absolute or relative to the place where the

daemon is started; ‘~/’ is expanded to $HOME. Default /tmp/x509up_uuid

XrdSecGSIPROXYVALID

validity of the proxy certificate; formst is in the form “hh:mm”. Default is

“12:00”, i.e. 12 hours.

XrdSecGSIPROXYKEYBITS

 bit strength of the proxy PKI. Default is 512.

XrdSecGSIPROXYDEPLEN

number of children generations which can originate from this proxy and

controls delegation extent. Use -1 for infinite. Default is 0.

Authentication Security

38 4-December-2023 sec & acc Configuration

XrdSecGSICADIR or X509_CERT_DIR

alternative full path to the directory containing the CA certificates; the path

can be absolute or relative to the place where the daemon is started; ‘~/’ is

expanded to $HOME. Default: /etc/grid-security/certificates

XrdSecGSICRLDIR or X509_CERT_DIR

alternative full path to the directory containing the files with CRL

information for CAs; the path can be absolute or relative to the place where

the daemon is started; ‘~/’ is expanded to $HOME. Default: /etc/grid-

security/certificates

XrdSecGSICACHECK (defines CA verification level):

 0 do not verify;

 1 verify if self-signed, issuing a warning if not;

 2 always verify the CAs in the chain, failing if not possible.

 Default is 1.

XrdSecGSICRLCHECK (type of check to be performed on CRLs):

 0 do not care; ignore any CRL information for the CA being used for

certificate chain verification;

 1 use CRL if available (if the CRL certificate is missing for a given CA, the

related CRL is assumed to be empty);

 2 require CRL for any trusted CA, but do not stop if the CRL certificate is not

up-to-date;

 12 require CRL for any trusted CA, and attempt to download the CRL

certificate if the file is not found or is not up-to-date;

 3 require an up-to-date CRL for each CA;

 Default is 1.

XrdSecGSICRLDIR

 alternative full path to the directory containing the CRL certificates; the path

can be absolute or relative to the place where the daemon is started; ‘~/’ is

expanded to $HOME. Default is the same as for CA certificates.

XrdSecGSICRLEXT

alternative default extension for CRL certificate files. Default is “.r0”.

Security Authentication

sec &acc Configuration 4-December-2023 39

XrdSecGSIDELEGPROXY (defines behavior with respect to proxy delegation):

 0 do nothing (i.e. delegation is disabled).

 1 sign the proxy certificate supplied by the server to enable delegation.

 2 send the local proxy certificate to the server (this includes proxy private key).

 Default is 0.

XrdSecGSISRVNAMES

Define valid CNs for the server certificates; default is null, which means that

the server CN must be in the form "*/<hostname>". The string may contain

multiple format specifications separated by a '|'. Each specifications can

contain the <host> or <fqdn> placeholders which are replaced by

XrdSecEntity.host; they can also contain the '*' wildcard. A '-' before the

specification will deny the matching CN's; the last matching wins.

XrdSecGSITRUSTDNS (controls hostname validation):

 0 do not use DNS to aide in certificate hostname validation.

 1 use DNS, if needed, to validate certificate hostnames.

 Default is 0.

Security Authentication

sec &acc Configuration 4-December-2023 41

2.5.1.5 xrdgsiproxy

xrdgsiproxy [mode] [-bits bits] [-cert file]

 [-certdir dir] [-debug] [-f file] [-key file]

 [-out file] [-path-length len] [-valid valid

Function

Stand-alone application to browse, create or destroy a user proxy certificate.

Parameters

mode Specifies the operation mode:

info display content of the proxy certificate;

init create a proxy certificate;

destroy destroy existing proxy certificate.

Default is info.

bits bits

Bit strength of the proxy PKI. Default is 512.

certdir dir

Alternate directory path for trusted Certificate Authority certificates. Default:

/etc/grid-security/certificates

cert file

Alternate path for the user certificate file.

Default: $HOME/.globus/usercert.pem

debug

Run in verbose mode.

f file, out file

 Alternate location of the proxy file. Default: /tmp/x509up_uuid

key file

Alternate path for the file containing the private key associated with the user

certificate. Default: $HOME/.globus/userkey.pem

Authentication Security

42 4-December-2023 sec & acc Configuration

path-length len

Number of child generations which can originate from this proxy (i.e., control

delegation). Use -1 for infinite. Default is 0.

valid valid

Validity of the proxy certificate. Default is 12:00, i.e. 12 hours.

Security Authentication

sec &acc Configuration 4-December-2023 43

2.5.2 host protocol

sec.protocol host

Function

Enable host protocol to be used.

Defaults

Even though the host protocol is built-in; it will not be used unless specified

with a protocol directive.

Notes

1) Because host protocol is the least restrictive authentication mechanism;

allowing its unbound use (see the protbind directive) makes all other

protocols superfluous. A warning message is issued if you define the host

protocol but do not restrict its use to certain hosts.

2) Warning: host protocol does not provide any significant level of security

and should only be used in instances where security violations do not

matter.

Example
 sec.protocol host

Security Authentication

sec &acc Configuration 4-December-2023 45

2.5.3 krb5 protocol

sec.protocol [libpath] krb5 [kfn] [-ipchk] sid

Function

Define the characteristics of the krb5 authentication protocol.

Parameters

libpath

The absolute directory path where the protocol shared library exists. If an

absolute path is not specified, the library must be on the search path defined

by the loader or the LD_LIBRARY_PATH environmental variable.

kfn The full pathname to the file that contains encryption and decryption keys for

the protocol. The default keyfile name is protocol dependent.

-ipchk

Verifies that credentials are always presented from the same host that

actually obtained the credentials.

sid The service principal name used for authentication.

Defaults

The keyfile location is defined by Kerberos V to be /etc/v5srvtab. IP checking

is disabled (i.e., the host that obtained credentials need not be the same as the

one that supplies the credentials).

Notes

1) The noipcheck option is provided for AFS Kerberos support (i.e., you

must specify noipcheck when using AFS kerberos) as well as support for

installations that wish to forward tickets from host to host.

Example
 sec.protocol krb5 /etc/krb5keys xrdserv

Authentication Security

46 4-December-2023 sec & acc Configuration

2.5.3.1 Configuring Kerberos V Security

Follow these steps to configure Kerberos V protocol for xrootd:

1. Create a principal in the Kerberos authentication database. This principal will

be the xrootd “service name”. While the default is to create a different

instance1 of the principal for every machine on which xrootd runs, it is much

easier to create a single instance for all machines, especially if you have many

machines.

2. Install a keytab file containing the principal’s key string. The keytab file may

be generated by using kadmin2 command in Unix and the Ktpass command

in Windows, as follows:

Unix:

 kadmin

 ktadd -k filename principal

Windows:

 Ktpass –princ principal –pass pswd -out filename

Substitute for filename the name of the keytab file you wish to create or the

name of an existing keytab file to which you wish to add a key. For principal,

substitute the name of the principal you created in the previous step. Consult

the man pages on kadmin and Ktpass for more information.

1. Place the srvtab file in a secure location on each server.

2. In the xrootd configuration file code the protocol directive using the

location of the srvtab file and the service name principal, as previously

described.

3. If you are using Kerberos V with AFS, make sure to not specify the -ipchk

protocol directive option since AFS does not handle ticket IP addresses.

1 Kerberos V service principals are of the form “name/hostname”.
2 The command requires the "inquire" administrative privilege.

Security Authentication

sec &acc Configuration 4-December-2023 47

2.5.4 pwd protocol

sec.protocol [libpath] pwd [-d:level] [-dir:dir]

 [-vc:level] [-syspwd] [-maxfail:num]

 [-lf:lifetime] [-a:option] [-c:list]

 [-upwd:option] [-udir:dir]

 [-cryptfile:file]

Function

Define the characteristics of the pwd authentication protocol.

Parameters

libpath

The absolute directory path where the protocol shared library exists. If an

absolute path is not specified, the library must be on the search path defined

by the loader or the LD_LIBRARY_PATH environmental variable.

d:level

Sets the verbosity level for this module to level; the level can be set to 1 (low),

2 (medium) or 3 (high or dump). Invoking xrootd with the verbose option –d

sets the internal verbosity for this module to 1. Default is 0.

dir:dir

Specifies the directory path where to look for the password file; if this

directive is missing, the password file is searched for under $HOME/.xrd; the

alternative directory path can be either absolute (begins with ‘/’), relative to

$HOME (begins with ‘~’), or relative to directory where the daemon is started.

Examples:

 -dir:/etc/xrd

 make use of /etc/xrd/pwdadmin as password file

 -dir:~/local/xrd

 make use of $HOME/local/xrd/pwdadmin as password file

 -dir:xrd

 make use of $PWD/xrd/pwdadmin as password file

Authentication Security

48 4-December-2023 sec & acc Configuration

vc:level

 Specifies the level of verification of client identity:

0 no additional check is done; the exchanged information packet

could potentially be re-used for a reply attack.

1 verify timestamp signature; this limits the time window for reply

attacks to 5 min.

2 verify random nonce signature; this choice eliminates the risk of

reply attacks; it requires an additional exchange.

Default is 2.

syspwd

Instructs the server to check also the system password file; the right privileges

must be owned by the server to be able to do this operation.

maxfail:num

Specifies the maximum number of unsuccessful attempts allowed before the

related user tag is blocked. Option disabled by default.

lf:lifetime

Specifies the lifetime of the current password; when a time interval longer

than this value is elapsed from the last the password change, the user is asked

to change its password at next login. The format is

“<years>y:<days>d:<hours>h:<minutes>m:<seconds>:s”

 e.g. “1y:182d:12h” for one year and a half. Lifetime is infinite by default.

a:option

 Specify the set of users allowed to auto-register. Possible choices

 0 none

1 users with an account on the machine (according to getpwnam)

or with an enabled entry in the password file;

 2 everybody.

 Default is 0.

Security Authentication

sec &acc Configuration 4-December-2023 49

c:list

Specifies the list of supported cryptographic modules; the default is

‘ssl|local’, with ‘ssl’ indicating the module based on OpenSSL, and ‘local’ an

implementation of cipher-related functionality written by A. Pukall

(http:/membres.lycos.fr/pc1/) and provided for backup in the case OpenSSL is

not available.

upwd:option

Specify whether the server should also consider password files provided by

users having an account on the server node; possible choices:

 0 ignore user password files

1 use user password file $USERHOME/.xrd/pwduser, where

$USERHOME is the user home directory as returned by

getpwnam; the default subdirectory .xrd can be changed with –

udir (see below).

2 check also password files with crypt-like password hashes; the

default name for the file is $USERHOME/.xrdpass and can be

changed with –cryptfile (see below). This option is provided

mostly for backward compatibility with ROOT daemons.

 Default is 0.

udir:dir

Specify alternative user sub-directory for the user password file; if existing,

the file read is “$HOMEUSER/dir/pwduser”. Default: .xrd.

cryptfile:file

Specify alternative name for file with crypt-like password hash when option -

upwd:2 has been specified. Default: .xrdpass

Defaults

See description of each single parameter.

Example
 sec.protocol pwd -a:1

Authentication Security

50 4-December-2023 sec & acc Configuration

2.5.4.1 Configuring pwd Security

2.5.4.1.1 Server side

Follow these steps to configure the password-based protocol for xrootd:

1. Create a password file. To create the file in the default location

($HOME/.xrd/pwdadmin) just run xrdpwdadmin (see below). Add a contact

e-mail and the host name with

 xrdpwdadmin add –host FQDN -email e.mail@my.domain

2. Add entries for the users, e.g.

 xrdpwdadmin add usertag

The file $HOME/.xrd/genpwd/usertag is created: it contains information about

the temporary password and the public cipher initiators of the server. This

file should be sent in a secure way to the user for which usertag has been

created.

3. Users with an account on the system may be allowed by the server

administrator to define their own password file, a sort of auto-registration.

Option ‘-upwd:1’ enables this feature. A user-password file (default

coordinates $HOME/.xrd/pwduser) can be created in the same way as the main

password file, changing the mode with ‘-m user’; only entries tagged with the

file owner username are processed.

2.5.4.1.2 Client side

There are two files relevant for the client: the auto-login file (default

$HOME/.xrd/pwdnetrc) and the file with the server cipher public initiators (default

$HOME/.xrd/pwdsrvpuk). These files are created automatically by the code

initializing the client. However, the user can browse and modify them with

xrdpwdadmin. In particular, when the client receives the file pwdfile with password

and cipher information, it can import the content as follows

 xrdpwdadmin –m srvpuk –import pwdfile

 xrdpwdadmin –m netrc update –import pwdfile

Security Authentication

sec &acc Configuration 4-December-2023 51

By default auto-login is switched-off. It can be switched using the appropriate

environment variable (see below). The auto-login system understands any ‘*’ as a

wild character. A valid entry applying to a set of host of similar name can be copied

into an entry with a wild char using copy; for example, after

 xrdpwdadmin –m netrc copy usertag@lxplus076.cern.ch usertag@lxplus*

the password associated with usertag@lxplus* will be used for a first login attempt to

any machine of the LXPLUS cluster (depending on the shell, the ‘*’ may need to be

escaped in the above copy command).

Clients can require at any moment a password change by prefixing the password

with the string $changepwd$, e.g. if the current password for usertag is curpwd, and

the string “$changepwd$curpwd” is entered at password prompt, the client will be

prompted again for the new password.

The following environment variables are provided to change the defaults on the

client side:

XrdSecDEBUG verbose level; the level can be set to 1 (low), 2 (medium)

or 3 (high or dump). Default is 0.

XrdSecPWDAUTOLOG switch ON (=1) or OFF (=0) use of autologin information;

default is 0 (OFF).

XrdSecPWDALOGFILE full path to the file with autologin information. Default:

$HOME/.xrd/pwdnetrc

XrdSecPWDVERIFYSRV switch ON (=1) or OFF (=0) verification of server identity;

verification requires the signature of a random nonce,

which implies an additional exchange. Default is 1 (ON).

XrdSecPWDSRVPUK full path to the file with server cipher initiators. Default:

$HOME/.xrd/pwdsrvpuk

Security Authentication

sec &acc Configuration 4-December-2023 53

2.5.4.2 xrdpwdadmin

xrdpwdadmin [-m mode] action [tag] [newtag] [-f file]

 [-force] [-crypto list]

 [[-[no]passwd] [-[no]random] [-[no]change]

 [-import file]

 [-host name] [-email mail]

 [-iternum num] [-changepwd]

Function

Stand-alone application to browse, create or modify password and auto-login

files.

Parameters

mode specifies the operation mode:

admin manage a general password file (server side);

user manage user-specific password file (server side);

netrc manage an auto-login file (client side);

srvpuk manage a file with public cipher initiators (client side).

Default is admin.

action specifies the action to be performed on the file:

 add add new entry; requires specification of tag

update update information about an entry; requires specification of tag

remove remove all information about a tag; requires specification of tag

disable disable logins for a given tag; requires specification of tag

copy create a new tag as exact copy of an existing tag; requires

specification of tag and newtag

browse browse the content of the file

trim eliminate obsolete / not-reachable information after a remove

 Default is browse.

tag, newtag

String of characters of any length identifying a set of entries in the password
file.

f file specifies an alternative path for the file to manage/create.

Authentication Security

54 4-December-2023 sec & acc Configuration

[no]passwd

[add, update only] Controls whether a password should be assigned to the

entry or not; by default a password is assigned; if –nopasswd is specified, the

entry is just activated and, if auto-registration is allowed, the user will be

asked to set a password the first time she logs in.

[no]random

[add, update only] Controls randomness of a password; by default the new

password is a random string of 8 printable chars; if –norandom is specified, the

caller is prompted for a password; in update mode, a check is done to ensure

that the new password is different from the current one.

[no]change

[add, update only] Controls type of password; by default the new password is

a one-time only password to be changed upon first use; if –nochange is

specified, the password type is directly set to normal.

import file

[netrc, srvpuk only] Import information from the file received by the

administrator of the password file.

changepwd

[netrc only] Set password status to one-time-only so that at next login a

password change handshake is triggered.

host hostname

[admin, user only] Add a special entry with the host name to the password

file.

email e-mail

[admin, user only] Add a special entry with a contact e-mail to the password

file.

iternum num

[admin, user only] Number of iterations to be used in hashing within the key

derivation function. This is the main factor limiting time performance.

Default is 10000 (J. Viega, M. Messier, Secure Programming Cookbook , p. 141).

Security Authentication

sec &acc Configuration 4-December-2023 55

crypto list

List of cryptographic modules (separated by a vertical bar) to be used if

available. Default is ‘ssl|local’.

force

Forces execution of the requested action even if it modifies existing

information. When used together with add, it is equivalent to update.

Security Authentication

sec &acc Configuration 4-December-2023 57

2.5.5 sss protocol

sec.protocol [libpath] sss [options]

options: [{-c | --clientkt} cktpath]

 [{-e | --encrypt} etype]

 [{-g | --getcreds}]

 [{-l | --lifetime} lifetime]

 [{-k | --keyname}]

 [{-p | --proxy} protmap]

 [{-r | --refresh} refresh]

 [{-s | --serverkt} sktpath]

Function

Define the characteristics of the simple shared secret (sss) authentication

protocol.

Parameters

libpath

is the absolute directory path where the protocol shared library exists. If an

absolute path is not specified, the library must be on the search path defined

by the loader or the LD_LIBRARY_PATH environmental variable.

{-c | --clientkt} cktpath

is the absolute file-path to the client’s key table. The key table file must only

be readable by the username under which the client is running, or group

readable if the file name ends with “.grp”. This is provided as a hint to the

client and may be over-ridden (see the notes).

{-e | --encrypt} etype

 is the encryption type to be used when transmitting secret information. Valid

types are:

 bf32 Blowfish encryption with CRC32 message validation (the default).

{-g | --getcreds}

retrieves the original credentials from the client, if applicable. See the notes on

why you would want to specify this option.

Authentication Security

58 4-December-2023 sec & acc Configuration

{-k | --keyname}

uses the name of the key and key’s identifier used by the client to find the key

in the server’s key table. The default is to only use the key identifier. See the

notes on why this is the default and why you may want to specify this option.

{-l | --lifetime} lifetime

is the maximum lifetime of any encrypted message sent between the client

and server. Messages older than the specified number of seconds are rejected.

The default is 13 seconds.

{-p | --proxy} protmap

specifies the authentication protocols that the sss protocol may assume (i.e.

proxy). Specify for protmap a colon separated list of protocol names. See the

section on proxy authentication for more information. The default does not

allow proxy authentication.

{-r | --refresh} refresh

 is the key table file refresh interval. The server checks every refresh minutes if

minimum refresh value is 10 minutes. The default is 60 minutes.

{-s | --serverkt} sktpath

is the absolute file-path to the server’s key table. The key table file must only

be readable by the username under which the server is running or group

readable if the file name ends with “.grp”. The default is

“$HOME/.xrd/sss.keytab”.

Defaults

See description of each single parameter.

Notes

1) Default locations exist for client- and server-side key table files. This is

“$HOME/.xrd/sss.keytab”. Use the –c option to over-ride the default for

the client and the –s option to over-ride the default for the server. Note

that the client may specify a fixed location for the key table file

irrespective of any explicit or implicit default.

2) The --lifetime option controls how long an encrypted message may

remain valid. This minimizes replay attacks. However, if server or client

response times are slower than the lifetime of the message, the parties will

not be able to authenticate. In this case, you should specify a larger time.

Security Authentication

sec &acc Configuration 4-December-2023 59

3) The –getcreds option requests that the client supply the original

credentials that were issued for a previous authentication. This only

applies to proxy servers who are acting on behalf of a client. Normally,

credentials are not transmitted because they are unusable by a second

party unless they have been delegated. However, should they be

delegated, transmitting them to a third party may pose a security risk.

You should not specify this option unless it is essential to do so. The client,

nonetheless, is free to ignore this request.

4) The –keyname option qualifies the key lookup with the keyname used by

the client. By default, lookups are done only by keyid. However, it is

possible that the same keyid may appear under two different keynames

should they be added to the key table on different hosts or very close

together on the same host. The –keyname option addresses this problem.

The reason that it is not the default is strictly for backward compatibility

as many sites have solved this problem in ways that may be incompatible

with a keyname-keyid lookup.

5) The –getcreds and –keyname options appeared in Release 5. Older clients

do not support these options. Older clients never send credentials and the

server always reverts to keyid lookups for older clients.

6) The xrdsssadmin command is used to create and maintain key tables that

contain simple shared secrets. The command also is used to specify how

shared secrets map to authenticated user and group names.

7) An “sss” authenticated client can set its identity using an instance of an

object in the XrdSecsssID class. See the comments in XrdSecsssID.hh

source file for detailed information.

Example
 sec.protocol sss –r 30 –s /opt/xrootd/.xrd/sss.keytab

Authentication Security

60 4-December-2023 sec & acc Configuration

2.5.5.1 Proxy Authentication

The Release 5 version of the sss protocol is capable of proxying any credential that

may have been issued to a client. For instance, assume client A authenticates to

server X using gsi protocol then server X authenticates with server Y using sss it

may do so using client A’s credentials. The sss protocol, if allowed, recreates the

authentication context on server Y so that it appears that the server is actually

communicating with client A.

Since proxing security protocol identities comes with its own set of risks, it must be

explicitly enabled as follows:

a) The original protocol used by the client must appear in the list of allowable

protocols specified by the –authmap option,

b) The username assigned to the key used to encrypt communications must be

“allusers”. This allows you to selectively restrict proxying by key; and

c) The client must supply a username and its original trace identity.

Original credentials, if requested by the server (i.e. –getcreds option), are

honored by the client only if mutual authentication occurs and the key being

used is assigned the username “allusers”.

When proxying is not possible, the server reverts to identifying the protocol used

as sss and applies the key restrictions to the formulated identity. Otherwise, the

protocol is identified as the original one used by the client.

Security Authentication

sec &acc Configuration 4-December-2023 61

2.5.5.2 Configuring sss Security

2.5.5.2.1 Server side

For very simple3 installations, follow these steps to configure the sss protocol for

xrootd:

1. Create a key table file. To create the file in the default location

($HOME/.xrd/sss.keytab) just run xrdsssadmin (see below4) under the same

username that will be used for xrootd:

 xrdsssadmin add

2. Distribute the key table file to the hosts that need to share the secret in the key

table file. You can use a combination of ssh and xrdsssadmin to securely do

this. For example, executing the following under the same username that will

be used for xrootd

 cat $HOME/.xrd/sss.keytab | ssh user@host xrdsssadmin install

where user is the username that will be used to run the client application on

node host. This will create the file $HOME/.xrd/sss.keytab on the machine

named host only readable by user.

2.5.5.2.2 Client side

The only file that the client needs is the key table file. This should have been

distributed using the procedure outlined in the previous section. Two

environmental variables control client-side execution:

XrdSecDEBUG debug level; the level can be set to 1 (on). Default is 0.

XrdSecSSSKT holds the location of the key table file. When set, the key table

must exist as specified in the environmental variable. When not

set, the default is provided by the server initiating the

authentication protocol. If the server does not provide a default

or if the key table is not found there, $HOME/.xrd/sss.keytab

becomes the default.

3 For more complicated installations refer to the xrdsssadmin command.
4 For more complicated installations, see the description of the xrdsssadmin command.

Security Authentication

sec &acc Configuration 4-December-2023 63

2.5.5.3 xrdsssadmin

xrdsssadmin [options] action [keyfn[.grp]]

action: add | del | install | list

options: [-d] [-g group] [-h hold] [-k keyname[+]]

 [-l keylen] [-n keynum] [-s {c|g|k|n|u|x}]

 [-u user] [-x {days | mm/dd/yy}]

Function

Stand-alone application to browse, create or modify the key table for the sss

protocol.

Parameters

keyfn[.grp]

is the name of the key table file which is the target of the action. If the name

ends with .grp then the file is allowed to have group access read-mode bits

set. Otherwise, the file may only be read and written by the owner. If keyfn is

not specified, $HOME/.xrd/sss.keytab is used. See the notes for details.

add adds a new key to the key table. The new key may be assigned an optional

keyname, group, and user; with defaults of anywhere, nogroup, and nobody,

respectively.

del deletes an existing key from the key table. Only keys matching -g, -k, -n, and

-u options, as specified, are deleted.

install creates or replaces an existing key table. Only keys matching -g, -k, -n, and -u

options, as specified, are installed. The key table is read from standard in;

making the command suitable for use with ssh to provide a secure in-place

update of a key table on a remote host.

list displays the contents of the key table. Only keys matching -g, -k, -n, and -u

options, as specified, are displayed.

Authentication Security

64 4-December-2023 sec & acc Configuration

-d turns on debugging output.

-g group

specifies an optional group name. The resulting effect is dependent on the

action. See the notes for a detailed explanation.

-h hold is the maximum number of keys with the same keyname that are to be held in

the key table file. The default hold value is 3. See the notes for more

information.

-k keyname[+]

specifies an optional key name. The resulting effect is dependent on the

action. If the keyname ends with a plus sign (+), sss tokens may be forwarded

when encrypted by the associated key. Warning: forward-able sss tokens are

inherently less secure. See the notes for a detailed explanation.

-l keylen

is the byte-length of key to be added to the key table file via the add action.

The default key length is 32 bytes (i.e., 256 bits). The keylen value should be

between 4 and 128, inclusive. Otherwise, it is set to the minimum (maximum)

value, as appropriate.

-n keynum

specifies an optional key number. The resulting effect is dependent on the

action. See the notes for a detailed explanation.

-s {c|g|k|n|u|x}

 sorts the output of the list action in ascending order as follows:

 c - by creation date k - by key name u - by user name

 g - by group name n - by key number x - by expiration date

-u user specifies an optional user name. The resulting effect is dependent on the

action. See the notes for a detailed explanation.

-x days is the number of days that the key is to be valid. Specifying 0, the default, will

never expire the key.

-x mm/dd/yy

is the date at which the key is to expire.

Security Authentication

sec &acc Configuration 4-December-2023 65

Notes

1) The –g, –k, -n and –u options modify the effects of the specified action. For

del, install, and list actions, these options are used to narrow the set of

keys to which the action applies. That is, only keys matching the specified

options are deleted, installed, or listed.

2) For the add action, the –g, –k, and –u options are used to associated a

group name, key name, and user name with the key. The following table

lists the default names and special names.

Option Default Name Special Names

-g nogroup anygroup, usrgroup

-u nobody anybody, allusers

anygroup

allows the client using the key to specify 5 the actual group name. If the

client omits the specification, the default name is used.

usrgroup

always sets the group list to null. This defers setting the user’s groups

until authorization time6.

anybody

allows the client using the key to specify 7 the actual user name. If the

client omits the specification, the default name is used.

allusers

allows the original security protocol used by the client to be proxied by

the server. Special group names are ignored if proxing the user’s

identity is successful. See the section on proxy authentication.

3) Specifying any name other than a special name, prohibits the client from

over-riding the name. The authenticated name is set to the specified name

when the client successfully uses the associated key.

4) Warning: using special names require that you trust the client to specify a

proper name. Special names do not confer any additional security.

5 The client does this as specified in the XrdSecsssID.hh file.
6 The default authorization described in this reference uses the “userid” to look-up the associated

groups as defined by Unix.
7 The client does this as specified in the XrdSecsssID.hh file.

Authentication Security

66 4-December-2023 sec & acc Configuration

5) When the keyname ends with a plus sign, an sss token encrypted by the

associated key may be forwarded (i.e. used by a host different from the

one that encrypted the sss token). Warning: Allowing forwarded tokens

makes it impossible to detect man-in-the-middle attacks or stolen sss tokens. To

maintain a high level of security, you should avoid making sss tokens

forward-able whenever possible.

6) You need to make sss tokens forward-able for certain clients. For instance,

clients who reside on a private network and tunnel through a Network

Address Translation (NAT) device cannot use non-forward-able sss

tokens. This is because the NAT device appears as a man-in-the-middle

attacker to the sss protocol and the client’s sss token will be rejected.

Forward-able sss tokens avoid this problem.

7) For simple installations, you need not assign keys names. For more secure

installations, you can use the keyname to easily install designated keys on

designated hosts; limiting your exposure to intrusions. For instance,

xrdsssadmin –k io.slac.stanford.edu add /opt/xrootd/mytab

xrdsssadmin –k foo.hardvard.edu add /opt/xrootd/mytab

adds two keys to file /opt/xrootd/mytab, each with a unique name that

corresponds to the host that should receive that key. You can now easily

distribute the desired keys to each host by executing one of the following

grep io.slac.stanford.edu /opt/xrootd/mytab \

| ssh u1@io.slac.stanford.edu \

xrdsssadmin install /opt/xrootd/mytab

egrep ‘foo.harvard.edu|io.slac.stanford.edu’ /opt/xrootd/mytab \

| ssh u1@border.slac.stanford.edu \

xrdsssadmin install /opt/xrootd/mytab

Security Authentication

sec &acc Configuration 4-December-2023 67

2.5.6 unix protocol

sec.protocol [libpath] unix

Function

Define the characteristics of the unix authentication protocol.

Parameters

libpath

The absolute directory path where the protocol shared library exists. If an

absolute path is not specified, the library must be on the search path defined

by the loader or the LD_LIBRARY_PATH environmental variable.

Defaults

None.

Notes

1) Warning: unix protocol does not provide any significant level of security

and should only be used in instances where security violations do not

matter.

Example
 sec.protocol /usr/lib/xrd unix

Security Authentication

sec &acc Configuration 4-December-2023 69

2.5.7 ztn protocol

sec.protocol [libpath] ztn [options]

options: [-expiry {ignore | optional | require}

 [-maxsz toksz[k]] [-tokenlib tlpath]

Function

Define the characteristics of the ztn client validation protocol.

Parameters

libpath

The absolute directory path where the protocol shared library exists. If an

absolute path is not specified, the library must be on the search path defined

by the loader or the LD_LIBRARY_PATH environmental variable.

-expiry

Specifies how token expiration is to be handled should the expiry check not

be applied by the token validation library. Specify one of

ignore - token expiration should be ignored (not recommended).

optional - if the token specifies an expiration time is must not have passed.

require - the token must specify an expiration time and it must not have

 passed. This is the default.

-maxsz

The maximum size of a valid bearer token. Specify for toksz the size in bytes

or kilobytes if suffixed by the letter k. The maximum allowable size is 512k.

The default is 4k.

tlpath The absolute path bearer token authorization shared library. If an absolute

path is not specified, the library must be on the search path defined by the

loader or the LD_LIBRARY_PATH environmental variable. The default is

libXrdAccSciTokens.so.

Defaults
-expiry required -maxsz 4k –tokenlib libXrdAccSciTokens.so

Authentication Security

70 4-December-2023 sec & acc Configuration

Notes

1) The ztn client validation protocol is primarily meant verify that a

connecting client is capable of getting a valid unexpired bearer token from

a recognized token issuer. Clients that cannot show such proof are

rejected. This effectively screens out bad actors that try to anonymously

probe the server’s capabilities.

2) The ztn client validation protocol requires that all communications occur

over a TLS connection. When enabled the server automatically requires

that logins and all subsequent requests use TLS. This is enforced

irrespective of any other enabled authentication protocol even if such

protocols do not require TLS.

3) The ztn protocol records the token’s subject value as the name of the

incoming client. If the subject is missing (which normally results in

authorization failure), the client’s name becomes “anon”.

4) The -expiry none option is only used should the expiry check in the token

library not be applied. Normally, all tokens are required to have an

expiration time.

5) The ztn protocol returns failure if the corresponding token authorization

plug-in has not been enabled using the ofs.authlib directive.

6) See the following section on details of the token discovery mechanism.

Example
 sec.protocol ztn –maxsz 8k

Security Authentication

sec &acc Configuration 4-December-2023 71

2.5.7.1 Default token discovery mechanism and augmentation

When the server requests ztn to be applied and the default mechanism is not

disabled the following actions occur either before or after augmentation.

1. If the BEARER_TOKEN environment variable is set, then the value is taken

to be the token contents.

2. If the BEARER_TOKEN_FILE environment variable is set, then its value is

interpreted as a filename. If the file exists, the contents of the specified file are

taken to be the token contents.

3. If the XDG_RUNTIME_DIR environment variable is set, then take the token

from the contents of $XDG_RUNTIME_DIR/bt_ueuid (where euid is the

user’s effective uid). If the file exists, the contents of the file are taken to be the

token contents.

4. Otherwise, if the file /tmp/bt_ueuid (where euid is the user’s effective uid)

exists, the contents of the file are taken to be the token contents.

5. The token is deemed to not exist and unless there is post augmentation, ztn

validation fails.

In all cases the following processing rules also apply:

1. When a non-null token value is found, all whitespace on the left and right

sides of the value are stripped (whitespace is defined the same way as the

C99 isspace() function defines whitespace).

2. If after stripping the whitespace the result is null, the token is deemed to not

exist and the search for the token continues with the next step.

3. If after stripping the whitespace a value remains, it is taken as the token even

if it is invalid. This token value is used and all subsequent steps are ignored.

Since the ztn protocol generates a server-side error when an invalid token is

processed and is reflected to the client, this arrangement still conforms to

RFC6750.

In addition to the above, the client’s ztn protocol verifies that the file containing the

token is only readable and writable by the owner of the file. If this check fails, the

token is not returned.

Security Authentication

sec &acc Configuration 4-December-2023 73

2.6 protparm

sec.protparm pid parms

Function

Specify protocol parameters.

Parameters

pid The identifier of a yet-to-be-defined protocol with the protocol directive.

parms The parameters required by the protocol to operate successfully. The

parameters are protocol dependent.

Defaults

See each protocol for its specific set of default parameters.

Notes

1) The protparm directive allows you to conveniently specify very long

parameter strings. The final parameters are constructed in the order

specified; with each specification (i.e., parms) separated by a new-line (\n)

character. The first parameter string comes from the parms specification on

the protocol directive.

2) The specified pid must not have been yet defined using the protocol

directive.

3) Each specified pid must have a matching protocol directive following the

last occurrence of protparm pid.

Example
 sec.protparm krb5 /etc/krb5keys xrdserv

Security Authorization

sec &acc Configuration 4-December-2023 75

3 Default Authorization Configuration

3.1 audit

acc.audit parm [parm]

parm: deny | grant | none

Function

Control the level of auditing.

Parameters

parm The level of auditing specify one or more of:

deny - audit access denials

grant - audit access approvals

none - turn off auditing

Defaults
 acc.audit none

Notes

1) Audit parameters are cumulative. To enabled auditing of denials and

approvals you must specify both deny and grant parameters.

2) The none parameter turns off auditing regardless of what was specified

prior to the none parameter.

3) This directive is used by the default authorization scheme. Other

authorization schemes may or may not honor this directive.

Example
 acc.audit deny

Authorization Security

76 4-December-2023 sec & acc Configuration

3.2 authdb

acc.authdb path

Function

Specify the location of the authorization database.

Parameters

path The absolute path of the authorization database.

Defaults
acc.authdb /opt/xrd/etc/Authfile

Notes

1) You must specify the authdb directive together with the ofs.authorize

directive in order to enable authorization.

2) The meaning of the specification depends on the mechanism used to

obtain authorization information. The default implementation uses a flat

file. You specify the name of this flat file using the authdb directive.

3) In order to maintain proper security, the authorization file must only be

writable by the user running as xrootd. Some installation may also wish to

restrict read access to the same user.

4) This directive is used by the default authorization scheme. Other

authorization schemes may or may not honor this directive.

Example
 acc.authdb /opt/xrd/etc/AuthDB

Security Authorization

sec &acc Configuration 4-December-2023 77

3.3 authrefresh

acc.authrefresh seconds

Function

Control how frequently the authorization database is to be checked for

modifications.

Parameters

seconds

The number seconds between checks for modifications.

Defaults
acc.authrefresh 43200

Notes

1) The acc component periodically checks to see if the authorization database

has changed, If it has changed, xrootd rebuilds internal authorization

information from the database. This means that the authrefresh directive

determines the information currency.

2) Lower authrefresh seconds values increase xrootd overhead because

internal information may need to be rebuilt more frequently.

3) Higher authrefresh seconds values decrease xrootd overhead. However,

authorization information may be out of date for an excessively long

period of time.

4) This directive is used by the default authorization scheme. Other

authorization schemes may or may not honor this directive.

Example

 acc.authrefresh 10800

Authorization Security

78 4-December-2023 sec & acc Configuration

3.4 encoding

acc.encoding args

args: [pct path] [space char]

Function

Specify the encoding of access control targets.

Parameters

pct Specifies that the arguments are percent-encoded (a.k.a. url-encoded).

Currently, the only target that may be percent-encoded is the path, which

must be specified as an argument.

space Specifies that the id’s may be encoded with a character, char, that should be

converted to a space. The ids that may be encoded with a space character are:

group, organization, role, and user. Specify for char a single character that

should be converted to a space in any of the aforementioned ids.

Defaults

None, no encoding is recognized.

Notes

1) The pct encoding is most useful for specifying imbedded spaces in a path

using the standard %20 sequence. When enabled all paths are percent-

decoded before being used for authorization.

2) When a space character is specified, all relevant id’s are scanned for this

character and each occurrence is replaced by a space before the id is used

for authorization purposes.

Example
 acc.encoding pct path space ^

Security Authorization

sec &acc Configuration 4-December-2023 79

3.5 gidlifetime

acc.gidlifetime seconds

Function

Controls how long group membership information may be cached in

memory.

Parameters

seconds

The number seconds group membership information may be cached before it

must be discarded and subsequently re-determined, as needed. The value

may be suffixed by s, h, or m (the case is immaterial) to indicate that seconds

(the default), minutes, or hours are being specified, respectively.

Defaults
acc.gidlifetime 12h

Notes

1) Because it is relatively expensive to determine a user’s groups, xrootd

caches the information in memory for a limited time so that subsequent

requests for the user’s group memberships can be quickly satisfied. Since

the user’s groups may change, the information is cached for a limited

time. After the time interval expires, the membership information is

discarded so that the next request for the user’s groups will cause the

information to be recomputed.

2) Lower gidlifetime seconds values increase xrootd overhead because group

membership information may need to be rebuilt more frequently.

3) Higher gidlifetime seconds values decrease xrootd overhead. However,

group membership information may be out of date for an excessively long

period of time.

4) This directive is used by the default authorization scheme. Other

authorization schemes may or may not honor this directive.

Example
 acc.gidlifetime 4h

Authorization Security

80 4-December-2023 sec & acc Configuration

3.6 gidretran

acc.gidretran gid [gid [. . .]]

Function

Specify the Unix group ids that are aliases. See the notes on when to use this

directive.

Parameters

gid A Unix group number that is an alias for some other group number.

Defaults

None.

Notes

1) The gidretran directive may be used by large installations running NIS8 to

disambiguate group names. Large installations may have a group

membership list that is too large for a single group name entry. The

typical solution is to break-up the membership list and assign it to two or

more group names, each having the same group id number (gid). This

leads to ambiguity as to which name should be used. The gidretran

directive can record all such gid’s so that the authorization system knows

when to retranslate a group name to its base name (e.g., the one shown via

the ls command), as determined by the getgrgid() function.

2) Up to 128 group ids may be specified.

3) This directive is used by the default authorization scheme. Other

authorization schemes may or may not honor this directive.

Example

 acc.gidretran 10200 10201 10202

8 NIS+ does not have the problem described in this paragraph.

Security Authorization

sec &acc Configuration 4-December-2023 81

3.7 nisdomain

acc.nisdomain name

Function

Specify the domain name to use when determining membership in a NIS

netgroup.

Parameters

name The NIS domain name to use.

Defaults

None. By default, a null domain name is used so that membership is solely

determined based on the user’s name and the originating host name.

Notes

1) Membership in a NIS netgroup is determine by three factors:

a. User’s originating host name,

b. The user’s actual name, and

c. An arbitrary domain name.

The factors are commonly referred to as the (machine,user,domain) triple.

The innetgr() function determines whether a triple is a member of a

particular netgroup. When the domain name is not specified, then only

the machine and user fields are used to determine membership in the a

group, regardless of the domain specified in the NIS netgroup file.

2) Netgroup membership is only meaningful when the authorization

database contains privileges based on netgroup name (i.e., n record type

was specified).

3) This directive is used by the default authorization scheme. Other

authorization schemes may or may not honor this directive.

Example

 acc.nisdomain slacxrd

Authorization Security

82 4-December-2023 sec & acc Configuration

3.8 pgo

acc.pgo

Function

Specify how Unix group membership affects authorization.

Parameters

None.

Defaults

All of the groups in which a user is a member determine the user’s privileges.

Notes

3) By default, all of a user’s Unix groups determine the user’s access

privileges. This is the POSIX standard. Installations wishing SVR5

behavior should specify the pgo directive. When pgo is specified, only the

user’s primary group determines the user’s privileges.

4) The pgo directive can substantially reduce xrootd overhead when many

users have very long group membership lists.

5) This directive is used by the default authorization scheme. Other

authorization schemes may or may not honor this directive.

Example
 acc.pgo

Security Authorization Database

sec &acc Configuration 4-December-2023 83

4 Authorization Database File

Authorization information may come from various sources, depending on the

installation. The supplied implementation uses a flat Unix file to record

authorization information. Regardless of the information source, the following

semantics prevail.

An authorization database contains one or more authorization records.

Each authorization record is considered to be a capability.

Each capability is tied to a unique identifier within its name class.

An identifier may be a

 host name,

 domain name,

 netgroup name,

 organization name,

 role name,

 template name,

 group name (e.g. Unix, VOMS, etc),

 user name

All template identifiers are logically processed in the order specified. The processing

order of other identifiers is immaterial.

Each identifier is associated with an arbitrary list of path prefix-privilege pairs.

The list is always searched from left to right (i.e., in the order that it was specified).

The privileges associated with first prefix that matches an incoming path name are

considered to be the applicable privileges.

Additionally, the flat file implementation allows for

 comments (i.e., any record whose first character is a pound sign, #),

 blank records, and

 continuations designated by a back slash (\) as the last non-blank character

on the continued record.

Authorization Database Security

84 4-December-2023 sec & acc Configuration

4.1 Authorization Database Record Definition

idtype id { {path | \objectid} privs | tname } [{ {path | \objectid} privs | tname } [•••]]

idtype: g | h | n | o | r | s | t | u | x

privs: plets | -plets | plets-plets

plets: { a | d | i | k | l | n | r | w } [plets]

Where:

idtype

is a single letter indicating the type of identifier that follows. Valid type

letters are:

g - group name o - organization name t - template name

h - host/domain name r - role name u - user name

n - netgroup name s - special inclusive x - special exclusive

id The actual identifier. Identifier must be consistent with their type.

Additionally, host names must be fully qualified and specified in lower case.

Should a host name start with a period, it is treated as a domain name. A

domain name must match the right-most characters of a host name in order

for the associated capability to be used. An id can appear in only one rule.

\objectid

 The object identifier prefix to be used for matching purposes.

path The path prefix to be used for matching purposes.

privs The privileges associated with the preceding path. Privilege letters preceding

a minus sign represent the privileges being granted. Privilege letters

following the minus sign represent the privileges being denied. Privilege

letters stand for:

a - all privileges l - lookup a file (i.e., search directory)

d - delete (i.e., remove)a file n - rename a file

i - insert (i.e., create) a file r - read a file

k - lock a file (not used) w - write a file

Security Authorization Database

sec &acc Configuration 4-December-2023 85

tname A previously defined (i.e., occurring earlier in the file) template name. The

template’s associated path-privs list is logically substituted for the template

name.

Notes

1) Any number of database records (i.e., lines terminated by a new line, \n,

character) may be specified.

2) A database record may be continued to another record by placing a back

slash (\) character at the end of the record (i.e., last non-blank character).

Continuations are useful for long specifications since you are not allowed to

specify the same id within a type more than once.

3) Data records whose first character is a pound sign (#) are treated as

comments.

4) Blank database records are ignored.

5) Only one particular idtype-id combination may appear in the authorization

files. Therefore, you must specific all capabilities for an idtype-id in one

record. Use continuation syntax to improve readability.

6) The path-privs and objected-privs entries are always matched from left to

right. Therefore, specify paths and objectids from most significant to least

significant order (i.e., all exceptions or longest paths first)

7) The authorization system does not perform multiple slash removal. Therefore

a path prefix of /foo//bar and /foo/bar, while logically the same, are

treated as two distinct specifications.

8) While prefix matching does not differentiate file system objects, paths ending

with a slash logically indicate a directory. This type of specification works

consistently with all operations except “stat” and “list”. The reason is that

these operations specify directory names without a trailing slash.

9) In order to maintain a file system object view in a path prefix matching

model, the look-up privilege should be granted to all users for all path

prefixes.

10) Certain privileges should be granted together. For instance, insert privileges

should be granted along with delete privileges, and write with read.

11) The user record type is also used to convey default privileges and specified

referential privileges. Refer to the following sections for more information.

12) Not all authentication methods convey all identities. For instance, gsi

authentication may convey a role while unix authentication cannot.

13) The s and x rules use special compound id. See the next section on how to use

these rules

Authorization Database Security

86 4-December-2023 sec & acc Configuration

Example

t base /fie l

u abh /fie/foo/fum/ a /fie/foo/ rw base

A template named base has been defined. It provides for look-up privileges to any

file system object whose path starts with /fie. In this examples, it also implies that

the contents of the fie directory can be listed. Subsequently, user abh is granted all

permissions for file system objects that start with /fie/foo/fum/ (i.e., in directory

fum), read-write permissions for all file system objects that start with /fie/foo/

(i.e., in directory foo) and whatever privileges that are afforded by template base.

Security Authorization Database

sec &acc Configuration 4-December-2023 87

4.1.1 Defining Special Compound ID’s for s and x rules

The authorization system allows you to define special identifiers that capture one or

more identity components (e.g. name, group, role, organization, etc.). These id’s can

be used to specify privileges granted to clients that match the compound identity

using the s and x rules. This is shown below.

= id idspec [idspec [•••]]

{s | x} id { {path | \objectid} privs | tname } [{ {path | \objectid} privs | tname } [•••]]

idspec: g groupname | h hostname | o orgname | r rolename | u username

privs: plets | -plets | plets-plets

plets: { a | d | i | k | l | n | r | w } [plets]

Where:

id an arbitrary but unique identifier. The identifier is associated with the

subsequent client identity specification, idspec. The id can be used in a

subsequent s or x rule and can only appear in one rule.

idspec

is a single letter indicating the type of entity identifier that follows. You must

specify one or more of them. Valid type specifications are:

g - group name o - organization name u - user name

h - host/domain name r - role name

Should a host name start with a period, it is treated as a domain name. A

domain name must match the right-most characters of a host name. Any

single letter entity identifier may only appear once in an idspec list. An id

associated with the specified idspec is considered a match when all of the

entity identifiers are true for a client (i.e. the whole idspec applies).

s specifies an inclusive capability for the id. Inclusive capabilities add and

remove privileges granted by other matching rules.

Authorization Database Security

88 4-December-2023 sec & acc Configuration

x specifies an exclusive capability for the id. Exclusive capabilities determine

privileges irrespective of other matching rules, as follows:

o The system attempts to match the client’s identity against all x rules in

the order that they appear in the authorization file.

o The first matching rule establishes the client’s capabilities irrespective

of any other rules that may apply to the client.

\objectid path privs tname

 these are identical in meaning to those described in the previous section.

Notes

1) Since x rules are applied first and in the order that they appear in the

authorization file with the first matching rule establishing capabilities, you

should specify x rules in decreasing specificity.

2) The order in which you define special compound id’s is immaterial.

However, an id must be defined before it is used.

Example

= atlddm o atlas r production u ddm

= atlprod o atlas r production

x atlddm /atlas ld

x atlprod /atlas lrw

o atlas /atlas lr

A client whose name is ddm and is a member of the atlas organization and has a

role of production is allowed to lookup and delete files in /atlas. A client who is

a member of the atlas organization and has a role of production is allowed to

lookup, read and write files in /atlas. Otherwise, client’s who are members of the

atlas organization can only lookup and read file in /atlas.

Security Authorization Database

sec &acc Configuration 4-December-2023 89

4.1.2 Default Privileges

Default privileges may be specified using the user record type, as follows.

u * { path privs | tname } [{ path privs | tname } [•••]]

The use of an asterisk as the user name indicates that the specified privileges are to

apply to all users, regardless of their user name and location (subject to other

applicable negative privileges). The default specification is useful for granting all

users look-up privileges on the complete file space in order to maintain a file system

view of authorization.

4.1.3 User Fungible Capabilities

Privileges may be granted to specific paths that encode the user’s name without

having to specify each such path for every user as follows:

u = { path privs | tname } [{ path privs | tname } [•••]]

Each path in UFC record should contain the character sequence “@=”. The first such

sequence indicates where the user’s name should be substituted before a path prefix

match is attempted. This allows you to provide for file system areas that are

effectively “owned” by a user without needing to specify the actual user’s name.

Example

u * /xrd lr

u = /xrd/users/@=/ a

All users, by default, have read and look-up access fo any file system object

prefixed by /xrd (i.e., in directory xrd). However, users have all privileges

for any file system object that is prefixed by /xrd/users/, followed by their

user name, and ending with a slash (i.e., in a directory that corresponds to

their user name).

Security Documentation Changes

sec &acc Configuration 4-December-2023 91

5 Document Change History

1 June 2005

 Add the generalized if facility explanation.

18 July 2005

 Include GIS and PWD protocol information. Supplied by Gerri Ganis, CERN.

22 March 2006

 Add exec condition to if/else/fi.

23 May 2006

 Discuss the authorization plug-in and the ofs.authlib directive.

2 April 2007

 Move explanation of conditional directives to another manual.

 Some minor clean-up.

2 August 2007

 Add unix protocol description.

 Some minor clean-up.

8 January 2008

 General clean-up.

3 October 2008

 Add sss protocol description.

29 January 2009

 Add usrgroup option to the sss protocol.

7 April 2009

 Remove loginid option from the sss protocol.

25 November 2009

 Add ssl protocol description.

6 June 2011

 Make xrdsssadmin example for distributing keys more obvious.

Authorization Database Security

92 4-December-2023 sec & acc Configuration

27 September 2011

 Remove description of the krb4 and ssl protocols.

 Fully describe all of the gsi security options.

 Describe the generic AuthzVO plug-in.

-------------- Release 3.1.0

22 February 2012

 Add options 12 and 13 to “–crl:” to gsi security. Mentions these for envar

XrdSecGSICRLCHECK.

 Add the “–crlrefresh:” option to gsi security.

-------------- Release 3.1.1

6 April 2012

 Correct type: change “validvo” to “valido” as the VOMS way of screening

valid organizations in x.509 certificates.

-------------- Release 3.2.0

-------------- Release 3.2.1

-------------- Release 3.2.2

-------------- Release 3.2.3

-------------- Release 3.2.4

26 September 2012

 Document the sslhashold gsi security option.

 Document vomsfun and vomsfunargs gsi switches

-------------- Release 3.2.5 to 3.2.7

-------------- Release 3.3.0 to 3.3.2

7 February 2013

 Add link to external plug-in for VOMS extraction7 February 20134 December

20237 February 2013

 Remove description of sslhashold which was suppressed because an

automatic mechanism to handle hash algorithms has been implemented

 Regenerate index and fix some typos

Security Documentation Changes

sec &acc Configuration 4-December-2023 93

-------------- Release 3.3.3 to 3.3.6

-------------- Release 4.0.1 to 4.0.3

15 October 2014

 Explain how to create forward-able sss tokens using xrdsssadmin.

-------------- Release 4.1.0 to 4.3.0

-------------- Release 4.4.0

19 June 2016

 Explain how to do authorization based on objected.

-------------- Release 4.5.0 to 4.6.0

9 October 2016

 Explain the sec.level directive.

-------------- Release 4.7.0

7 April 2017

 Document the ‘o’ and ‘r’ record types in the authorization database.

3 August 2017

 Document the ‘=’, ‘s’ and ‘x’ record types in the authorization database.

27 October 2017

 Correct the ‘=’ compound type specification.

20 June 2018

 Better document the dlgpxy gsi option.

 Document the extended exppxy gsi option.

 Remove the redundant XrdSecGSISIGNPROXY client-side envar.

22 July 2018

 Add fattr request to the signing table.

Authorization Database Security

94 4-December-2023 sec & acc Configuration

12 March 2020

 Provide full names for single letter options for the sss protocol.

 Document the sss protocol –getcreds and –keyname options.

 Document proxy authentication for the sss protocol.

17 March 2020

 Documents the sec.entitylib directive.

16 May 2020

 Rewrite the gsi protocol section to make it more approachable.

 Add details on the VOMS plug-in.

19 May 2020

 Document the new version of the -vomsfunparms grpopt option.

5 June 2020

 Document the new version of the –authzpxy, -ca, -crl, -dlgpxy, -gmapopt,

and -vomsat gsi options.

 Document the -authzcall and -trustdns gsi options.

 Document the removal of the gsi built-in VOMS extractor and the change of

the -vomsat option default to ignore.

11 November 2020

 Correct documentation on how to specify the idtype (i.e. the single letter is not

followed by a colon).

15 January 2021

 Document the ztn client validation protocol.

15 February 2021

 Document -expiry option in the ztn client validation protocol.

17 February 2021

 Remove the controversial ztn options -rt and -use.

6 August 2021

 Document the acc.encoding directive

13 October 2022

 Do not imply that group name must be a Unix name in the auth DB file.

Security Documentation Changes

sec &acc Configuration 4-December-2023 95

13 October 2022

 Document the gsi protocol –showdn option.

4 December 2023

 Correct prefix for entitylib directive (it should have been “sec.”).

