

System Monitoring Reference

31-January-2024

Release 5.6.0+

Andrew Hanushevsky

ii 31-Jamiary-2024 Monitoring

©2003-2024 by the Board of Trustees of the Leland Stanford, Jr., University

All Rights Reserved

Produced under contract DE-AC02-76-SFO0515 with the Department of Energy
This code is available under a GNU Lesser General Public license.

For LGPL terms and conditions see http://www.gnu.org/licenses/

http://www.gnu.org/licenses/

 Monitoring

Monitoring 31-January-2024 iii

1 Monitoring... 7

2 Summary Monitoring Data Format 9

2.1 The mpxstats Command ... 9

2.1.1 Quick Guide Example ... 11

2.2 Summary Data ... 12

2.2.1 Buff Summary Data ... 12

2.2.2 Cache Summary Data .. 13

2.2.3 Cms Protocol Summary Data ... 15

2.2.3.1 Cmsc Protocol Summary Data .. 15

2.2.3.2 Cmsm Protocol Summary Data .. 16

2.2.3.3 Cmss Protocol Summary Data .. 17

2.2.4 Info Summary Data.. 18

2.2.5 Link Summary Data... 18

2.2.6 Ofs Summary Data... 19

2.2.7 Oss Summary Data .. 20

2.2.8 Poll Summary Data .. 21

2.2.9 Proc Summary Data ... 21

2.2.10 Pss Summary Data ... 22

2.2.11 Sched Summary Data .. 23

2.2.12 Sgen Summary Data .. 23

2.2.13 Xrootd Protocol Summary Data ... 24

3 Detailed Monitoring Data Format...................................... 27

3.1 Event Monitoring Overview ... 28

3.2 Common Packet Header ... 30

3.2.1 Alternative Packet Header (g-Stream) .. 31

3.3 Monitor Map Message Format.. 33

3.3.1 Message Info Field ... 35

3.3.2 Alternative Monitor Map Messages (g-Stream) 39

3.4 The f-stream (fstat) .. 41

3.4.1 Disc Event.. 44

3.4.2 Open Event.. 44

3.4.3 Close Event.. 46

3.4.4 Xfr Event .. 48

3.5 The g-stream (ccm, pfc, tcpmon and tpc) 49

3.5.1 Alternative g-Stream Headers.. 51

3.5.2 Cache g-Stream ... 52

3.5.3 TPC g-Stream .. 53

3.6 The r-stream (redir) ... 55

3.6.1 Understanding Multiple Redirection Streams 58

Monitoring

iv 31-Jamiary-2024 Monitoring

3.7 The t-stream (files, io, and iov) .. 59

3.7.1 Monitor Trace Message Format ... 60

4 Document Change History ... 65

 Monitoring

Monitoring 31-January-2024 5

 Monitoring

Monitoring 31-January-2024 7

1 Monitoring

XRootD provides two types of monitoring: 1) summary monitoring and 2) detail

monitoring. Summary monitoring is controlled by the xrd.report directive while

detail monitoring is controlled by the xrootd.monitor and xrootd.mongstream

directives. All of these directives are documented in the “Xrd/Xrootd Configuration

Reference”.

In order to provide real-time information with minimal impact, monitor data is sent

as UDP messages. Each directive specifies what information is to be sent as well as

the destinations. Because UDP is used, information is sent whether or not the

receiving host is listening for the records. You should not activate monitoring if you

do not activate the receiving end, as well.

Below is a graphic showing all of the available monitoring streams and their

intended destinations.

Summary monitoring is suitable for providing a broad over-view of an XRootD

cluster. The information is typically rendered by agents such as Ganglia or Mona

Lisa, among others.

Monitoring

8 31-Jamiary-2024 Monitoring

Detail monitoring is suitable for deep analysis of access and usage patterns of an

XRootD cluster. Since such information is necessarily complex, specialized

renderers must be used.

The XRootD monitoring architecture is highly suited for publish-subscribe

environments; as shown below and typified by Apache Kafka or Spark.

Because XRootD monitoring data uses a common compact format it is easy to collect

and cross-reference. A collector would reconstruct the streams to contain relevant

data for each type of subscriber in the desired format (e.g. JSON). A collector could

also push preset data streams to known renderers like dash boards.

The following sections describe the data formats of each monitoring stream.

 Monitoring

Monitoring 31-January-2024 9

2 Summary Monitoring Data Format

The xrd.report directive specifies the parameters as well as the hosts that are to

receive the summary information, Summary records are sent as UDP datagrams.

Therefore, the information is sent whether or not the receiving host is enabled for

the records. Summary information is formatted as an XML record and is described

in the following sections. When dealing with XML formats you must:

1. Be insensitive to the XML tag order within a phrase, and

2. Ignore undocumented tags.

Normally, multiple xrootd servers transmit summary information to a collector (i.e.,

a process accepting messages on a specific port). In order to simplify the processing

of summary information, a UDP multiplexing and XML parsing program, called

mpxstats, is provided. This program accepts data on a selectab le port, multiplexes

received the datagrams into a single stream, and optionally parses the XML into

either a CGI format or a flat key-value format. The output is sent to standard out for

further processing.

2.1 The mpxstats Command

mpxstats [-f {cgi | flat | xml}] –p port [-s]

Function

Multiplex UDP datagrams into a single stream and optionally parse the data.

Options & Parameters

-f Parses the received data into the specified format:

cgi Computer Gateway Interface

flat Simple keyword-value format

xml Original format (i.e., input is not parsed)

-p port is the port to use for accepting UDP datagrams.

-s includes the actual sender in cgi and flat format output.

Defaults

By default, xml output format is used. The UDP port must be specified.

Monitoring

10 31-Jamiary-2024 Monitoring

Notes

1) The cgi and flat formats are based on the input the xml tags, without

interpretation. Therefore, un-described tags may appear in the output and

should be ignored.

2) The cgi format generally produces: “var=value[&var=value[. . .]]\n”. Each

var is based on an xml format item and the value is the item’s associated

value. One new-line terminated string is generated for each UDP packet.

3) The cgi format is suitable for input to an XrdOucEnv class object which

converts cgi strings into environment variable store. The class provides a

simple value look-up scheme; much like getenv().

4) The flat format generally produces: “var value\n[var value\n[. . .]]\n”. Each

var is based on an xml format item and the value is the item’s associated

value. Each var-value pair is a new-line terminated string. A null line is

generated at the end for each UDP packet.

5) The flat format is suitable for input to Perl and Python scripts and can

easily be used to construct var-value hashes for further processing.

6) The mpxstats program writes its output to standard out. Error messages

are written to standard error.

 Monitoring

Monitoring 31-January-2024 11

2.1.1 Quick Guide Example

This picture illustrates the general

scheme most installations use to

gather summary statistics and

insert them into their monitoring

framework. Here a number of

xrootd servers send their statistics

to a collector machine listening at

port 3333. The collector merges all

of the data streams and sends a selection of the desired data to the monitoring

infrastructure.

To implement such a scheme, follow these steps:

1. In the configuration file for each xrootd insert the following directive

 if exec xrootd

 xrd.report collector_host_name:3333 every 15 all -poll

 fi

Where collector_host_name is the name of the machine that collects and

formats the summary data. The if/fi construct only allows xrootd to report

statistics as the cmsd does not currently report meaningful statistic.

2. Start the data multiplexing program and feed its output to program or script

that can inject the data into the monitoring infrastructure. For instance,

 mpxstats –f flat –p 3333 | send2monitor

The send2monitor script is, of course, installation dependent. Below is a simple perl

script that reads the statistical data from standard in, places it a hash, and then calls

a subroutine that can use the values in the hash to feed Ganglia.

#!/bin/perl

do {undef %StatsData;

 while (($Line = <STDIN>) ne "\n")

 {exit if !chomp($Line);

 ($Var,$Val) = split(' ',$Line);

 $StatsData{$Var} = $Val;

 }

 Ganglia(); # Inject data into the monitoring system

 } while(1);

send2monitor: Place Data In a Hash Indexed By the Data’s Variable Name

Monitoring

12 31-Jamiary-2024 Monitoring

2.2 Summary Data

<statistics

 tod="int64" ver="chars" src=”chars” tos=”int64”

 pgm=”chars” ins=”chars” pid=”int” site=”chars”> • • •

</statistics>

Variable Type S Explanation Of Value
host char The name of the host that sent the UDP packet. *

ins char The instance name specified via –n option (anon if none).
pgm char The name of the program.
pid int The program’s process ID.
site char The specified site name.

src char Host and port reporting data, specified as “hostname:port”
tod int64 Unix time when statistics gathering started.
tos int64 Unix time when the program was started.
ver char The version name of the server’s code.

2.2.1 Buff Summary Data

<stats id="buff">

<reqs>int</reqs><mem>int64</mem><buffs>int</buffs>

<adj>int</adj>

</stats>

Variable Type S Explanation Of Value
buff.adj int Adjustments to the buffer profile.
buff.buffs int Number of allocated buffers.
buff.mem int64 Bytes allocated to buffers.

buff.reqs int Requests for a buffer.

*
 This information is provided by the Operating System’s recvfrom() function, not the data stream. It is present

only when the –s mpxstats option has been specified.

 Monitoring

Monitoring 31-January-2024 13

2.2.2 Cache Summary Data

<stats id="cache" type=”type”>

<prerd>

 <in>int64</in><hits>int64</hits><miss>int64</miss>

</prerd>

<rd>

 <in>int64</in><out>int64</out>

 <hits>int64></hits><miss>int64</miss>
</rd>

<pass>int64<cnt>int64</cnt></pass>

<wr><out>int64</out><updt>int64</updt></wr>

<saved>int64</saved><purge>int64</purge>

<files>

 <opened>int64</opened><closed>int64</closed>

 <new>int64</new>

</files>

<store><size>int64</size><used>int64</used>

 <min>int64</min><max>int64</max>

 </store>

 <mem>

 <size>int64</size><used>int64</used><wq>int64</wq>

</mem>

<opcl>

 <odefer>int64</odefer><defero>int64</defero>

 <cdefer>int64</cdefer><clost>int64</clost>

</opcl>

</stats>

Monitoring

14 31-Jamiary-2024 Monitoring

Variable Type S Explanation Of Value
type char Type of cache (i.e. pfc or rmc)
prerd.in int Bytes read into the cache via pre-read mechanism.
prerd.hits int Number of pre-read pages that were wanted
prerd.miss int64 Number of pre-read pages that were not wanted.

rd.in int Bytes read into the cache via demand.
rd.out Bytes delivered out of the cache to satisfy requests.
rd.hits Number of times wanted data was in the cache.
rd.miss Number of times wanted data was not in the cache.

pass Number of bytes read but not cached.
pass.cnt Number of times requested data bypassed the cache.
wr.out Bytes written out of the cache.
wr.updt Bytes written into the cache.

saved Bytes written from memory to storage.
purge Bytes purged from storage.
files.opened Number of cache files opened.
files.closed Number f cache files closed.

files.new Number of cache files that were created.
store.size The size of cache storage in bytes.
store.used Storage bytes in use.
store.min The minimum number of storage bytes in use.

store.max The maximum number of storage bytes in use.
mem.size The size of the cache memory in bytes.
mem.used Memory bytes in use.
mem.wq Bytes currently in the memory write queue.

opcl.odefer Number of deferred open requests.
opcl.defero Number deferred opens that were actually opened.
opcl.cdefer Number of deferred close requests.
Opcl.clost Number of uncompleted close requests.

 Monitoring

Monitoring 31-January-2024 15

2.2.3 Cms Protocol Summary Data

The cms protocol has three distinct sub-protocols:

 Client identified by the tag id cmsc,

 Manager identified by the tag id cmsm, and

 Server identified by the tag id cmss.

Each provides different summary statistics as each sub-protocol performs different

actions. Even within each sub-protocol, the reporting entity may have a distinct role

that also affects which information is actually reported. The following table lists the

role identifiers (role ID) reported in the “role” tag.

Role ID Corresponding role directive Role ID Corresponding role directive
E peer PR proxy supervisor

EM peer manager PS proxy server
M manager R supervisor
MM meta manager S server
PM proxy manager

2.2.3.1 Cmsc Protocol Summary Data

<stats id="cmsc">

<role>chars</role>

</stats>

Variable Type S Explanation Of Value
cmsc.role char Role identification for reporter (see table above).

Monitoring

16 31-Jamiary-2024 Monitoring

2.2.3.2 Cmsm Protocol Summary Data

<stats id="cmsm">

<role>chars</role>

<sel><t>int64</t><r>int64</r><w>int64</w></sel>

<node>int

 <stats id="i">

 <host>chars</host>

 <role>chars</role><run>chars</run>

 <ref><r>int</r><w>int</w></ref>

 [<shr>int<use>int</use></shr>]

 </stats> • • •
</node>

[<frq>

 <add>int64<pb>int64</pb></add>

 <rsp>int64<m>int64</m></rsp>

 <lf>int64</lf><ls>int64</ls>

 <rf>int64</rf><rs>int64</rs>

</frq>]

</stats>

Variable Type S Explanation Of Value
cmsm.role char Role identification for reporter (see table

above).
cmsm.sel.t int64 Number of node selections.
cmsm.sel.r int64 Number of node selections for read access.
cmsm.sel.w int64 Number of node selections for write access.

cmsm.node int Number of subsequent node stats (0 <= i < n).
cmsm.node.i.host char DNS name of host or IPV6 address.
cmsm.node.i.role char Role identification for host (see table above).
cmsm.node.i.run char Run status as a sequence of characters:

a – active d – disabled n - nostaging

o – offline w - writable
cmsm.node.i.ref.r int Number of times selected for read access.
cmsm.node.i.ref.w int Number of times selected for write access.
cmsm.node.i.shr int Desired share of requests†, if so configured.
cmsm.node.i.shr.use int64 Number of times share was exhausted.

†
 This tag is only present for MM roles (meta manager) and if requested via the cms.repstats direct ive.

 Monitoring

Monitoring 31-January-2024 17

Variable Type S Explanation Of Value
cmsm.frq.add int64 Additions to the fast response queue (frq) ‡.
cmsm.frq.add.d int64 Additions that were duplicates.
cmsm.frq.rsp int64 Responses received.

cmsm.frq.rsp.m int64 Multiple responses were fielded.
cmsm.frq.lf int64 Lookups dispatched that required no wait.
cmsm.frq.ls int64 Lookups dispatched that required a full wait.
cmsm.frq.rf int64 Redirects dispatched that required no wait.

cmsm.frq.rs int64 Redirects dispatched that required a full wait.

2.2.3.3 Cmss Protocol Summary Data

<stats id="cmss">

<role>chars</role>

</stats>

Variable Type S Explanation Of Value
cmss.role char Role identification for reporter (see table above).

‡
 This tag is only present if requested via the cms.repstats direct ive.

Monitoring

18 31-Jamiary-2024 Monitoring

2.2.4 Info Summary Data

<stats id="info">

<host>chars</host><port>int</port><name>chars</name>

</stats>

Variable Type S Explanation Of Value§

info.host char Hostname that generated the information.
info.name char Instance name specified via –n option (anon if none).
info.port int Port used for server requests.

2.2.5 Link Summary Data

<stats id="link">

<num>int</num><maxn>int</maxn><tot>int64</tot>

<in>int64</in><out>int64</out><ctime>int64</ctime>

<tmo>int</tmo><stall>int</stall><sfps>int</sfps>

</stats>

Variable Type S Explanation Of Value

link.ctime int64 Cumulative number of connect seconds. ctime/tot gives

the average session time per connection.

link.in int64 Bytes received.
link.maxn int Maximum number of simultaneous connections.
link.num int Current connections.
link.out int64 Bytes sent.

link.sfps int Partial sendfile() operations.
link.stall int Number of times partial data was received.
link.tmo int Read request timeouts.
link.tot int64 Connections since start-up.

§
 The info tag is deprecated and normally does not get included as this information is present in the header tag.

It is documented here for backwards compatibility.

 Monitoring

Monitoring 31-January-2024 19

2.2.6 Ofs Summary Data

<stats id="ofs">

<role>chars</role><opr>int</opr><opw>int</opw>

<opp>int</opp><ups>int</ups><han>int</han>

<rdr>int</rdr><bxq>int</bxq><rep>int</rep>

<err>int</err><dly>int</dly><sok>int</sok>

<ser>int</ser>

<tpc><grnt>int</grnt><deny>int</deny>

 <err>int</err><exp>int</exp></tpc>

</stats>

Variable Type S Explanation Of Value
ofs.bxq int Background tasks processed.
ofs.dly int Delays imposed.
ofs.err int Errors encountered.

ofs.han int Active file handles.
ofs.opp int Files open in read/write POSC mode.
ofs.opr int Files open in read-mode.
ofs.opw int Files open in read/write mode.

ofs.rdr int Redirects processed.
ofs.rep int Background replies processed.
ofs.role char Reporter’s role (e.g., manager, server, etc).
ofs.ser int Events received that indicated failure.

ofs.sok int Events received that indicated success.
ofs.ups int Number of times a POSC mode file was un-persisted.
ofs.tpc.grnt int Number of third party copies allowed.
ofs.tpc.deny int Number of third party copies denied.

ofs.tpc.err int Number of third party copies that failed.
ofs.tpc.exp int Number of third party copies whose auth expired.

Monitoring

20 31-Jamiary-2024 Monitoring

2.2.7 Oss Summary Data

<stats id="oss">

<paths>int

<stats id="i">

 <lp>”chars”</lp><rp>”chars”</rp>

 <tot>int64</tot><free>int64</free>

 <ino>int64</ino><ifr> int64</ifr>

</stats> • • •

</paths>
<space>int

 <stats id="i">

 <name>chars</name>

 <tot>int64</tot><free>int64</free>

 <maxf>int64</maxf><fsn>int</fsn>

 <usg>int64</usg>[<qta>int64</qta>]

 </stats> • • •

</space>

</stats>

Variable Type S Explanation Of Value

oss.paths int Number of subsequent paths stats (0 <= i < n).
oss.paths.i.free int64 Kilobytes available.
oss.paths.i.ifr int64 Number of free inodes.
oss.paths.i.ino int64 Number of inodes.
oss.paths.i.lp char The minimally reduced logical file system path.
oss.paths.i.rp char The minimally reduced real file system path.
oss.paths.i.tot int64 Kilobytes allocated.
oss.space int Number of subsequent space stats (0 <= i < n).
oss.space.i.free int64 Kilobytes available.
oss.space.i.fsn int Number of file system extents.
oss.space.i.maxf int64 Max kilobytes available in a filesystem extent.
oss.space.i.name char Name for the space.
oss.space.i.qta int64 Total space quota **, if supported.
oss.space.i.tot int64 Kilobytes allocated.
oss.space.i.usg int64 Usage associated with space name, if supported.

**

 This tag may be missing if quotas have not been configured.

 Monitoring

Monitoring 31-January-2024 21

2.2.8 Poll Summary Data

<stats id="poll">

 <att>int</att><en>int</en><ev>int</ev><int>int</int>

</stats>

Variable Type S Explanation Of Value
poll.att int File descriptors attached for polling.

poll.en int Poll enable operations.
poll.ev int Polling events.
poll.int int Unsolicited polling events.

2.2.9 Proc Summary Data

<stats id="proc">

 <usr><s>int</s><u>int</u></usr>

 <sys><s>int</s><u>int</u></sys>

</stats>

Variable Type S Explanation Of Values Reported by getrusage()

proc.sys.s int Seconds of system-time.
proc.sys.u int Microseconds of system-time.
proc.usr.s int Seconds of user-time.
proc.usr.u int Microseconds of user-time.

Monitoring

22 31-Jamiary-2024 Monitoring

2.2.10 Pss Summary Data

<stats id="pss">

<open>int64</errs>int64</errs></open>

<close>int64</errs>int64</errs></close>

</stats>

Variable Type S Explanation Of Value
pss.open int Number of remotes file opens.

pss.open.errs int Number of opens that failed.
pss.close int Number of remote file closes.
pss.close.errs int Number of closes that failed.

 Monitoring

Monitoring 31-January-2024 23

2.2.11 Sched Summary Data

<stats id="sched">

 <jobs>int</jobs><inq>int</inq><maxinq>int</maxinq>

 <threads>int</threads><idle>int</idle><tcr>int</tcr>

 <tde>int</tde><tlimr>int</tlimr>

</stats>

Variable Type S Explanation Of Value

sched.idle int Number of scheduler threads waiting for work.
sched.inq int Number of jobs that are currently in the run-queue.††
sched.jobs int Jobs requiring a thread.
sched.maxinq int Longest run-queue length

sched.tcr int Thread creations.
sched.tde int Thread destructions.
sched.threads int Number of current scheduler threads.
sched.tlimr int Number of times the thread limit was reached.

2.2.12 Sgen Summary Data

<stats id="sgen"><as>0</as><et>0</et><toe>toe</toe></stats>

Variable Type S Explanation Of Value
sgen.as int One if data was asynchronously gathered, 0 otherwise.
sgen.et int64 Elapsed milliseconds from start to completion of statistics.

sgen.toe int64 Unix time when statistics gathering ended.

††

 The number o f active requests is represented by (sched.threads – sched.idle + sched.inq).

Monitoring

24 31-Jamiary-2024 Monitoring

2.2.13 Xrootd Protocol Summary Data

<stats id="xrootd">

 <num>int</num>

 <ops>

 <open>int</open><rf>int</rf><rd>int64</rd>

 <pr>int64</pr><rv>int64</rv><rs>int64</rs>

 <wr>int64</wr><sync>int</sync>

 <getf>int</getf><putf>int</putf><misc>int</misc>

 </ops>

 <aio>

 <num>int64</num><max>int</max><rej>int64</rej>

 </aio>

 <err>int</err><rdr>int64</rdr><dly>int</dly>

 <lgn>

 <num>int</num><af>int</af><au>int</au><ua>int</ua>

</lgn>

</stats>

Variable Type S Explanation Of Value

xrootd.num int Number of times the protocol was selected.
xrootd.aio.max int Maximum simultaneous async I/O requests.
xrootd.aio.num int64 Async I/O requests processed.
xrootd.aio.rej int64 Async I/O requests converted to sync I/O.

xrootd.dly int Number of requests that ended with a delay.
xrootd.err int Number of requests that ended with an error.
xrootd.ops.getf int Getfile requests.
xrootd.ops.misc int Number of “other” requests.

xrootd.ops.open int File open requests.
xrootd.ops.pr int64 Pre-read requests.
xrootd.ops.putf int Putfile requests.
xrootd.ops.rf int Cache refresh requests.

xrootd.ops.rd int64 Read requests.
xrootd.ops.rs int64 Readv segments.
xrootd.ops.rv int64 Readv requests.
xrootd.ops.sync int Sync requests.

xrootd.ops.wr int64 Write requests.

 Monitoring

Monitoring 31-January-2024 25

Variable Type S Explanation Of Value

xrootd.rdr int64 Number of requests that were redirected.
xrootd.lgn.num int Number of login attempts.
xrootd.lgn.af int Number of authentication failures.
xrootd.lgn.au int Number of successful authenticated logins.

xrootd.lgn.ua int Number of successful un-authentication logins.

 Monitoring

Monitoring 31-January-2024 27

3 Detailed Monitoring Data Format

The xrootd.monitor directive specifies the monitor parameters as well as the hosts

that are to receive the monitoring information. A similar directive, frm.all.monitor

provides monitor parameters for the File Residency Manager (FRM). Monitor

records are sent as UDP datagrams. Therefore, the information is sent whether or

not the receiving host is enabled for the records.

Four main streams available from xrootd and are enabled using the xrootd.monitor

and xrootd.mongstream directives, as follows:

 f-stream summarizes file access events; enabled by the fstat event option.

 g-stream summarizes various plug-in events; enabled by the ccm, pfc, and

 tcpmon event options.

 r-stream details client redirections; enabled by the redir event option.

 t-stream details file access events; enabled by the files, io, and iov event

 options.

The above three streams are continuous in that multiple events are contain in each

information UDP packet. Other XRootD streams contain a single event per packet

and provide information necessary to relate the events contained in the continuous

streams. These are:

 =-stream provides server identification; enabled by the ident option.

 d-stream provides the identifier assigned to a user and file path; enabled

by the files option.

 i-stream provides client supplied information; enabled by the info option.

 u-stream provides client login information; enabled by the auth and user

options

Finally, there are two streams available from the File Residency Manager (FRM) and

are enabled using the frm.monitor directive. These are:

 p-stream provides information about file purge events from; enabled by

the purge option.

 x-stream provides information on files copied into and out of the server;

 enabled by the migr and stage options.

Each stream is independent in that event types are not mixed together in any UDP

packet. That is, a d- stream only contains events related to that stream. Streams other

than f-, g-, r-, and t-streams are grouped under the rubric of map messages. They

contain only one event per UDP packet and are described in the “Monitor Map

Message Format” section. The f-, r-, and t-streams are sufficiently complicated to

deserve separate treatment.

Monitoring

28 31-Jamiary-2024 Monitoring

3.1 Event Monitoring Overview

i. When the server starts up it sends a identification message to each stream

receiver (i.e. ‘=’ record). This message may be periodically repeated, depending

on the specified configuration.

ii. Each time a client logs in or authenticates, the system assigns the client a

unique dictionary ID (dictid). The mapping between the dictionary ID and the

client generates a separate monitor record that is sent to the destination host.

This dictid is used in subsequent records that refer to the client. This only

occurs if the auth or user option is specified on the xrootd.monitor directive.

iii. Each time a client opens a particular file, the system assigns the client/file-path

combination a unique dictionary ID (dictid). The mapping between the

dictionary ID and the client/file-path pair generates a separate monitor record

that is sent to the destination host. This dictid is used in subsequent records

that refer to the client’s use of the particular file. This only occurs if the files

option is specified on the xrootd.monitor directive. It is meant to expedite

translating the t-stream into useful information. The fstat lfn option provides a

similar feature but includes the information directly in the f-stream. It is rare to

enable the “t” and f-streams together.

iv. Each type of g-stream can also generate “d” and “i” mapping records. The

mapping records are sent to the receiving host assigned to the particular g-

stream.

v. Each time a client injects application information into the monitoring stream,

the system assigns the information a unique dictionary ID (dictid). The

mapping between the dictionary ID and the client/application pair generates a

separate monitor record that is sent to the destination host. The dictid is also

returned to the client to help cross reference client activities with the server.

This occurs only when the info option is specified on the xrootd.monitor

directive.

vi. The dictid is used to compress out redundant information. Every event that is

associated with a particular mapping uses the dictid for that mapping in the

actual monitoring stream. Thus, it is critical for the receiver to maintain the

mapping.

vii. Monitor records are formatted as structured binary records. All numeric fields

within the record are sent in network byte order. However, it is possible to

specify alternate non-binary formats for g-streams as these streams are

generated by plug-ins which may or may not be part of the XRootD core. See

the xrootd.mongstream directive for additional information as well as g-

streams details in this document.

 Monitoring

Monitoring 31-January-2024 29

viii. Each datagram is self-consistent. That is, information is never logically split

across data-grams. Mapping requests are always fully contained within a

datagram. The f- and t-stream datagrams are always bracketed by window

timing marks.

ix. The r-stream (redirect events)) contain only a single timing mark, ostensibly to

supply the server’s identification. However, each event is time stamped with a

resolution equal to the timing window.

x. Definitions of the structures and symbols described in the following sections

can be found in the “XrdXrootdMonData.hh” file.

Monitoring

30 31-Jamiary-2024 Monitoring

3.2 Common Packet Header

The following figure describes the common header in each UDP packet sent by

xrootd or the FRM daemon.

struct XrdXrootdMonHeader

 {kXR_char code; // = | d | f | g | i | p | r | t | u | x

 kXR_char pseq; // packet sequence

 kXR_unt16 plen; // packet length

 kXR_int32 stod; // Unix time at Server start

 };

Header for Each Monitor Message Data-gram

Actual information structures follow the header in the same data-gram. The code

identifies the stream, as follows:

 = – server identification sent by xrootd or the FRM

 d – dictid of a user/path combination (xrootd only)

 f – file access events (xrootd only)

 g – general events such as file cache information (xrootd only)

 i – dictid of a user/information combination (xrootd only)

 p – file purge event (FRM only)

 r – client redirect events (xrootd only)

 t – a file or I/O request trace (xrootd only)

 u – dictid of the user login name and authentication (xrootd only)

 x – file transfer event (FRM only)

The stream code, also called the record type, is placed in the header’s code variable.

The pseq variable is an ascending, wrapping, packet sequence number, whose value

ranges from 0 to 255. This provides a gross mechanism to order packets. I/O event

timing marks and file and redirect time stamps within the packet provide more

accurate information. The plen variable contains the packet’s length. This value can

be used to verify that the system’s reported length equals the intended length. The

stod, defined as Unix time, is the time when the server was started. Thus, each

stod/dictid and stod/hostid combination is unique across all time.

All binary information in a packet is formatted in network byte order and must be

converted to host order in order to be meaningful.

 Monitoring

Monitoring 31-January-2024 31

3.2.1 Alternative Packet Header (g-Stream)

As mentioned earlier, g-streams can request that the packet header be sent as a CGI

query string or a JSON object. Both are text-only formats. Minimally, the packet

always starts with the information shown below:

CGI: dflthdr[srchdr]…

dflthdr: code=code&pseq=pseq&stod=stod&sid=sid

srchdr: sitehdr | hosthdr | insthdr | fullhdr

sitehdr: &src.site=sname

hosthdr: sitehdr&src.host=hname

insthdr: hosthdr&src.port=port&src.inst=iname

fullhdr: insthdr&src.pgm=pname&src.ver=ver

JSON: {dflthdr[,src{srchdr}]…}

dflthdr: "code":"code","pseq":pseq,"stod":stod,"sid":sid

srchdr: sitehdr | hosthdr | insthdr | fullhdr

sitehdr: "site":"sname"

hosthdr: sitehdr,"host":"hname"

insthdr: hosthdr,"port":port, "inst":"iname"

fullhdr: insthdr,"pgm":"pname","ver":"ver"

Where:

dflthdr is the default header. It contains

 code Identifies the packet and is one of:

 = – server identification sent by xrootd

 d – dictid for a path (xrootd only)

 g – general events such as file cache information (xrootd only)

 i – dictid for information (xrootd only)

pseq packet sequence number that ranges from 0 to 999.

stod server’s start time in Unix seconds.

sid server’s fingerprint.

Monitoring

32 31-Jamiary-2024 Monitoring

srchdr lists the attributes of the server producing the message. The list of included

attributes is configurable and options correspond to the tag names. The srchdr

is optional in most cases. When it exists is contains one or more of the

following:

sname site name (sitehdr, hosthdr, insthdr, or fullhdr option).

hname host name or IP address (hosthdr, insthdr, or fullhdr option).

port port number (insthdr or fullhdr option).

iname instance name (insthdr or fullhdr option).

pname program name (fullhdr option).

ver version string (fullhdr option).

Notes

1) Additional data may be contained in the packet depending on its code, as

indicated by the triple dot, and is described in each relevant “code” section.

2) The server’s fingerprint is a SHA3-512 digest of the server’s site name, host

name, port number, instance name, and program name. The digest is

convoluted with a CRC32C checksum of the same information to produce a

practically unique 48-bit number. Hence, sid is for Server ID and can be used

as a shorthand to cross reference monitoring records with a particular server.

The details of the server are specified in the “=” map record and some or all of

the information may also be contained in other g-stream records, depending

on the configuration.

 Monitoring

Monitoring 31-January-2024 33

3.3 Monitor Map Message Format

struct XrdXrootdMonMap

 {XrdXrootdMonHeader hdr;

 kXR_unt32 dictid;

 char info[];

 };

A map message ‘=’, ‘d’, ‘i’, ‘p’, ‘T’, ‘u’, ‘U’, or ‘x’ in hdr.code is generated when a

client:

 user logs in (type ‘u’),

 user associated experiment and activity (type ‘U’),

 user uses a JWT (i.e. token) to gain file read or write access (type ‘T’),

 purges a file (type ‘p’),

 transfers a file (type ‘x’),

 opens a file (type ‘d’), and

 associates information with the session (type ‘i’).

For each record other than ‘=’, ‘p’ and ‘x’, xrootd generates a unique dictionary ID

and assigns it to the user/appinfo, user/authinfo, user/eainfo, and user/path

combinations. This identifier is called a dictid.

The MonMap record describes this mapping. It starts with a standard header.

Following the header is the binary dictionary ID, dictid. This ID is unique within the

server’s boot-session. That is, every time the server is restarted, the dictid value is

reset to zero. For ‘=’, ‘p’ and ‘x’ records, the dictid is always zero.

In order to maintain unique dictid’s across multiple servers so that the dictid can be

used as a database key, you must combine the dictid with the sending server’s host

name or IP address, port number or instance name (if multiple servers are running

on the same host), and boot time.

Monitoring

34 31-Jamiary-2024 Monitoring

The dictid is referenced in the continuous streams (i.e. f, g, r, and t) to avoid

repeating rather lengthy information in each event record. Therefore, it is necessary

to collect this information in order to report events relative to specific file names and

users. Since UDP packets may arrive out of order it is possible to receive a map

record with a dictid that was used in a previous packet. To avoid this problem

buffer a small number of packets and order them by packet sequence number before

processing. Alternatively, hold the packet that has an undefined dictid, with a

suitable timeout, until the matching map record arrives.

The ‘U’ record is special in that adds additional information to a previous ‘u’ record

and is sent when that information becomes known. Specifically, the experiment code

and the activity code for the user identified in the ‘u’ record. ‘U’ record information

may or may not be available and is dependent on properly configured packet

marking or identifying information in a file URL’s cgi (i.e. via the scitag.flow token).

Mapping experiment and activity codes to actual names requires access to a json file

maintained by the research networking infrastructure group (e.g. ESNET or

LHCONE).

 Monitoring

Monitoring 31-January-2024 35

3.3.1 Message Info Field

Code Contents of info Code Contents of info

= userid\nsrvinfo T userid\ntokeninfo

d userid\npath u userid\nauthinfo

i userid\nappinfo U userid\neainfo

p userid\nprginfo x userid\nxfrinfo

userid: prot/user.pid:sid@host

authinfo: [&p=ap&n=[dn]&h=[hn]&o=[on]&r=[rn]&g=[gn]&m=[info]][loginfo]

eainfo: &Uc=udid&Ec=expc&Ac=actc

loginfo: &x=[xeqname]&y=[minfo]&I={4|6}

prginfo: xfn\n&tod=tod&sz=bytes&at=at&ct=ct&mt=mt&fn=x

srvinfo: &site=sname&port=pnum&inst=iname&pgm=prog&ver=vname

tokeninfo: &Uc=udid&s=subj&n=[un]&o=[on]&r=[rn]&g=[gn]

xfrinfo: lfn\n&tod=tod&sz=bytes&tm=sec&op=op&rc=rc[&pd=data]

Where:

Token Explanation

actc The activity code associated with the user identified by udid.

ap Authentication protocol name used to authenticate the client.

appinfo Un-interpreted application or plug-in supplied information.

at File’s access time in Unix seconds.

bytes Size of the migrated, purged, or staged file in bytes.

ct File’s creation time in Unix seconds.

expc The experiment code associated with the user identified by udid.

data Optional program monitoring data returned by the transfer command.

dn Client’s distinguished name as reported by ap. If no name is present, the

variable data is null.

gn Client’s group names in a space-separated list. If no groups are present,

the tag variable data is null.

hn Client’s host’s name as reported by ap. If no host name is present, the

variable data is null.

host Host name, or IP address, where the user’s request originated.

Monitoring

36 31-Jamiary-2024 Monitoring

Token Explanation

iname Server’s instance name as specified with he –n command line option. If

no instance name was specified, “anon” is reported as the instance name.

lfn Logical name of the transferred file.

loginfo Arbitrary monitoring information specific to the protocol being used at

login time. If no information is present, the tag variable data is null.

minfo Contents of the XRD_MONINFO client-side environmental variable.

mt File’s modification time in Unix seconds.

on Client’s organization name as reported by ap. If no organization is

present, the tag variable data is null.

op The character operation code for a file transfer event, as follows:

0 - Unknown operation, this usually indicates a logic error.

1 - File was copied into the server by client request.

2 - File was copied out of the server by migration system request.

3 - Same as 2 but the file was removed after migration.

4 - File was copied out of the server by client request.

5 - Same as 4 but the file was removed after the copy completed.

6 – File was copied into the server by staging system request.

path Full path name of the file being opened.

pid Session ID associated with the connection. This will be unique until 32-bit

rollover or server restart occurs.

pnum Server’s main port number.

prog Name of the server’s executable program.

prot Communication protocol being used by the client (e.g., xroot, http, etc).

rc The return code. If the request was successful, the it is zero. Otherwise,

the request failed. For failing stage requests, the bytes is also zero.

rn Client’s role name as reported by prot. If no role name is present, the

variable data is null.

sec Number of seconds it took to migrate or stage in the file (i.e., the time

between the start of the request to the time the request completed).

sid The unique fingerprint for the server instance. This will change when the

server is restarted.

sname Server’s designated site name.

subj The token’s subject name.
tod The Unix seconds, as returned by time(), when the record was produced.

udid The user’s dictionary id sent on a previous ‘u’ record.

un The token’s (possibly mapped) username.

 Monitoring

Monitoring 31-January-2024 37

Token Explanation

user Unix username of the user as reported by the client (i.e. unverified) or the

plug-in identifier. You can distinguish between the two as plug-ins

always report a pid of zero. The user name is the plug-in component

name (e.g. pfc).

vname Server’s version identification string.

x The letter ‘l’ if xfn is a logical file name (LFN) or ‘p’ if it is a physical file

name (PFN). Normally, x should be ‘l’. See the notes for exceptions.

xeqname Name of the executable program the client is running with the path

removed.

xfn Logical or physical name of the file that was purged. The “fn” tag

indicated the name’s type (see the description of the x value).

4|6 Client’s network mode: 4 for IPv4 and 6 for IPv6.

Notes

1) The sid The d , i and u messages with authinfo contain two ASCII text strings,

separated by a new-line (\n) character.

2) The p and x messages contain three ASCII text strings, separated by a new-

line (\n) character.

3) The “fn” tag in the p message should normally have a value of ‘l’. When an

error occurs translating the physical file name to its logical counterpart, the

physical name is reported and the tag value is set to p. Reporting of physical

names should be treated as an error and is likely due to a misbehaving name-

to-name plug-in.

4) The u messages do not end with a new-line character if authinfo was not

requested when configuring monitoring.

5) The T record is produced only when either login or authentication

monitoring is enabled.

6) The T and U records are ancillary information and should be paired with a

preceding u record using the udid dictionary code. Multiple T and U records

may be sent for using the same udid and do not necessarily have the same

CGI values.

7) The server’s site name is arbitrary and optional and may be specified on the

command line or in the configuration file.

8) Mapping packets can be sent at any time. Interspersed with the mapping

packets are file, redirect, and trace packets.

9) The server identification packet, =, may be sent on a periodic basis. See the

ident option on the xrootd.monitor and frm.all.monitor directives.

 Monitoring

Monitoring 31-January-2024 39

3.3.2 Alternative Monitor Map Messages (g-Stream)

g-streams can be configured to send packet headers as a CGI query string or a JSON

object. Both are text-only formats. This only affects the =, d, and i map records as

these are the only ones that the g-stream can create. Each message starts with the

alternative packet default header described earlier (i.e. dflthdr, fullhdr, and srchdr).

Additional tokens are added to the header, as shown below.

CGI: dflthdrfullhdr

dflthdr: code==&pseq=pseq&stod=stod&sid=sid

JSON: {dflthdr,src{fullhdr}}

dflthdr: "code":"=","pseq":pseq,"stod":stod,"sid":sid

ident (“=”) message

CGI: dflthdr[srchdr]&gs.type=type&did=did&data=data

dflthdr: code=code&pseq=pseq&stod=stod&sid=sid

JSON: {dflthdr[,src{srchdr}],mapinfo}

dflthdr: "code":"code","pseq":pseq,"stod":stod,"sid":sid

mapinfo: "gs":{"type":type},"did":did,"data":"data"

“d” or “i” messages

Monitoring

40 31-Jamiary-2024 Monitoring

Where:

Token Explanation

code Identifies the packet and is one of:

d – dictid for a path (xrootd only)

i – dictid for information (xrootd only)

type The g-stream generating the message and is one of:

C – generated by the pfc plug-in (i.e. cache)

M – generated by the ccm plug-in (i.e. cache context management)

P – generated by the a Third Party Copy operation.

T – generated by the tcpmon plug-in

dictid Numeric dictionary identifier which is unique within a server instance.

data Data associated with dictid.

 Monitoring

Monitoring 31-January-2024 41

3.4 The f-stream (fstat)

The f-stream is enabled using the fstat option on the xrootd.monitor directive. It

contains multiple types of variable length structures, each describing a particular

event. However, it is always framed in the same way:

 The packet starts with the standard header (XrdXrootdMonHeader),

 followed by the UNIX time of the first event entry in the packet, encapsulated

in an XrdXrootdMonFileTOD structure, and

 is followed by one or more variable length structures detailing specific

events.

The following diagram shows the packet structure.

struct XrdXrootdMonHeader;

struct XrdXrootdMonFileTOD;

*

* 1 or more of XrdXrootdMonFileCLS, XrdXrootdMonFileIO,

* and XrdXrootdMonFileOPN

*

Because the structures are variable length, each one starts (i.e. contains as its first

member) a standard header structure, XrdXrootdMonFileHdr, that not only details

the type of structure but also the length of the structure. It is always followed by the

XrdXrootdMonFileTOD structure, as follows:

Struct XrdXrootdMonFileHdr

 {char recType; // Identifies type of structure

 char recFlag; // Structure specific flags

 short recSize; // Size of this structure in bytes

Union {kXR_unt32 fileID; // dictid if recType != isTime

 kXR_unt32 userID; // dictid if recType == isDisc

 short nRecs[2]; // isTime: nRecs[0] == isXfr recs

 // nRecs[1] == total recs

 };

 };

You must use the length XrdXrootdMonFileHdr::recSize to skip to the next

structure in the packet as members may be added causing the structure to change in

length. The recSize member will always have the correct size of the enclosing

structure.

Monitoring

42 31-Jamiary-2024 Monitoring

The recType member identifies the type of structure. The value comes from the

recTval enum defined in the structure but not shown in the graphic. The following

table summarizes the possible values (recType values, when used, should be

preceded by “XrdXrootdMonFileHdr::”).

XrdXrootdMonFileHdr::recType Structure Encompassing Header

isClose XrdXrootdMonFileCLS

isDisc XrdXrootdMonFileDSC

isOpen XrdXrootdMonFileOPN

isTime XrdXrootdMonFileTOD

isXFR XrdXrootdMonFileXFR

The recFlag member contains structure-specific flags which are discussed along with

each structure. The recSize member contains the actual size of the structure. After

converting it to host byte order, it must be used to find the start of the next structure

in the packet. Since each structure starts with XrdXrootdMonFileHdr, it is easy to

make a determination as to which actual structure the header should be cast to.

When recType is neither isDisc nor isTime then fileID in the structure contains the

dictid assigned to the file associated with the structure. When recType is isDisc then

userID in the structure contains the dictid assigned to the disconnecting user.

Otherwise, nRecs should be used as it contains the number of records in the packet

and can be used to distribute events across the reporting time interval.

As previously noted, XrdXrootdMonHeader is always the first structure in the

packet and is always followed by the XrdXrootdMonFileTOD structure, as follows:

struct XrdXrootdMonFileTOD

{

XrdXrootdMonFileHdr Hdr; // recType == isTime

int tBeg; // time(0) of following record

int tEnd; // time(0) when packet was sent

kXR_int64 sID; // Server identifier lower 48 bits

};

The tbeg value is the Unix time when the following record was added to the packet

and tEnd is the Unix time when the packet was sent. Recall that the Hdr contains the

number of subsequent records in the packet in the nRecs field in this record type.

 Monitoring

Monitoring 31-January-2024 43

The server’s identifier appears in each XrdXrootdMonFileTOD entry in the sID

member. This is identical to the sid in the userid in map entries. It is encoded in the

lower 48 bits of the first 8 bytes and always appears once after the header. You can

extract the sid with the following expression
ntohll(sID) & XROOTD_MON_SIDMASK

Definitions of the structures and symbols described here can be found in the

“XrdXrootdMonData.hh” file.

The following table lists all possible values in the header recFlag member for the

TOD structure. The values are defined in XrdXrootdMonFileHdr::recFval enum.

However, they must be tested individually using a bitwise “and” operator. The

recFlag values, when used, should be preceded by “XrdXrootdMonFileHdr::”.

XrdXrootdMonFileHdr::recFlag Meaning

hasSID The sID member is present

If you are using the sID member, you should test if the hasSID flag is set. Old

records did not have this member.

Monitoring

44 31-Jamiary-2024 Monitoring

3.4.1 Disc Event

When a client disconnects from the server, an isDisc record is placed in the f-stream.

This record consists of nothing more than the header and identifies the

disconnecting user. It is always the last record generated by the user.

struct XrdXrootdMonFileDSC

{

XrdXrootdMonFileHdr Hdr; // recType == isDisc

};

The tbeg value is the Unix time when the following record was added to the packet

and tEnd is the Unix time when the packet was sent. Recall that the Hdr contains the

number of subsequent records in the packet in the nRecs field in this record type.

3.4.2 Open Event

Information regarding a file open event is shown below.

struct XrdXrootdMonFileLFN

 {

 kXR_unt32 user; // dictid for the user

 char lfn[1032];// Variable length!

 };

struct XrdXrootdMonFileOPN

 {

 XrdXrootdMonFileHdr Hdr; // recType == isOpen

 long long fsz; // file size at open

 XrdXrootdMonFileLFN ufn; // OPTIONAL

 };

Open events insert the variable length structure XrdXrootdMonFileOPN into the f-

stream. The structure is variable because it may or may not contain the

XrdXrootdMonFileLFN structure. If the structure exists then recFlag indicates this.

The structure is included if the lfn option is specified on the xrootd.monitor

directive. The reason this is optional is because a d map message is sent if the files

option is specified as well. In this case, there is no reason to duplicate the

information.

 Monitoring

Monitoring 31-January-2024 45

If XrdXrootdMonFileLFN is present it is variable in size. The structure merely

defines the maximum size of the lfn which makes it convenient to use functions like

strcpy() without the compiler warning that the copy exceeds the length of the buffer.

Since the string defined in ufn.lfn is guaranteed to end with a null byte, all string

functions can be used on this array.

Preceding the array is the dictid assigned to the client that performed the open in

ufn.user. This dictid is reported in the u-stream (i.e. u map info) when the client

initiates a session. This is enabled with the auth or user options on the

xrootd.monitor directive. If neither has been selected, the dictid is reported as zero

(i.e. unassigned).

The following table lists all possible values in the header recFlag member for the

open structure. The values are defined in XrdXrootdMonFileHdr::recFval enum.

However, they must be tested individually using a bitwise “and” operator. The

recFlag values, when used, should be preceded by “XrdXrootdMonFileHdr::”.

XrdXrootdMonFileHdr::recFlag Meaning

hasLFN XrdXroodMonFileLFN present

hasRW File opened for reads & writes

Monitoring

46 31-Jamiary-2024 Monitoring

3.4.3 Close Event

The close structure describing a close event is shown below.

struct XrdXrootdMonStatOPS

{

int read; // Number of read() calls

int readv; // Number of readv() calls

int write; // Number of write() calls

short rsMin; // Smallest readv() segment count

short rsMax; // Largest readv() segment count

long long rsegs; // Number of readv() segments

int rdMin; // Smallest read() request size

int rdMax; // Largest read() request size

int rvMin; // Smallest readv() request size

int rvMax; // Largest readv() request size

int wrMin; // Smallest write() request size

int wrMax; // Largest write() request size

};

union XrdXrootdMonDouble

{ long long dlong;

 double dreal;

};

struct XrdXrootdMonStatSDV

{

XrdXrootdMonDouble read; // Sum(all read requests)
2
 (bytes)

XrdXrootdMonDouble readv; // Sum(all readv requests)
2
 (bytes)

XrdXrootdMonDouble rsegs; // Sum(all readv segments)
2
 (count)

XrdXrootdMonDouble write; // Sum(all write requests)
2
 (bytes)

};

struct XrdXrootdMonStatXFR

{

long long read; // Bytes read from file using read()

long long readv; // Bytes read from file using readv()

long long write; // Bytes written to file

};

struct XrdXrootdMonFileCLS // Variable Length!

{

XrdXrootdMonFileHdr Hdr; // Always present

XrdXrootdMonStatXFR Xfr; // Always present

XrdXrootdMonStatOPS Ops; // OPTIONAL

XrdXrootdMonStatSSQ Ssq; // OPTIONAL

};

 Monitoring

Monitoring 31-January-2024 47

When a file is closed, a XrdXrootdMonFileCLS structure is inserted into the f-

stream. It is variable in length because certain statistics are optional. The recFlag bits

in the XrdXrootdMonFileHdr record indicate which structures are present.

Additionally, the flag indicates whether or not the client actually closed the file. The

values are defined in XrdXrootdMonFileHdr::recFval enum. However, they must be

tested individually using a bitwise “and” operator. The following table summarizes

the possible values (recFlag values, when used, should be preceded by

“XrdXrootdMonFileHdr::”).

XrdXrootdMonFileHdr::recFval Meaning

forced Disconnect prior to close

hasOPS XrdXroodMonFileOPS present

hasSSQ XrdXroodMonFileSSQ present

The XrdXrootdMonFileOPS structure is inserted when the ops option is specified in

the xrootd.monitor directive. It is important to note that the minimum and

maximum values for readv requests represent bytes for a complete quest request

(i.e. sum of all segments). It is not the minimum and maximum of any individual

segment.

The XrdXrootdMonFileSSQ structure is inserted when the fstat ssq option is

specified. The counts can be used to compute the standard deviation for read and

write request sizes using the formulae show below. Normally, ssq implies ops

because standard deviation cannot be computed without the operation counts.

The sum of squares count is reported in

network byte order using the IEEE 754

floating point format. The counts are not

available on platforms that do not support

the IEEE 754 format.

Monitoring

48 31-Jamiary-2024 Monitoring

3.4.4 Xfr Event

The f-stream may contain transfer events when the fstat xfr option is specified.

These events detail in-progress data transfers for currently open files. One such

event is produced for each open file that has had I/O activity since the last report.

Because it is time driven, files opened during the reporting may or may not be

included in the event stream. However, if they are still open they are included

during the next reporting interval. In all cases, an open event always precedes a

transfer event for that file. Xfr events for a file can never appear after the file’s close

event entry.

The following details the transfer event data structure.

struct XrdXrootdMonStatXFR

 {long long read; // Bytes using read()

 long long readv; // Bytes using readv()

 long long write; // Bytes using write()

 };

struct XrdXrootdMonFileXFR

 {

 XrdXrootdMonFileHdr Hdr; // recType == isXfr

 XrdXrootdMonStatXFR Xfr; // Current bytes so far

 };

 Monitoring

Monitoring 31-January-2024 49

3.5 The g-stream (ccm, pfc, tcpmon and tpc)

The g-stream is enabled using the ccm, pfc, tcpmon, or tpc option on the

xrootd.monitor or xrootd.mongstream directive. It contains multiple types of

variable length ASCII newline separated text fields, each describing a particular

event. However, it is always framed in the same way:

 The packet starts with the standard header (binary, CGI, or JSON).

 It is followed by temporal information which contains the UNIX time of the

first event entry followed by the UNIX time of the last event entry. The time

stamps are followed by an encoded a plug-in and server identifier.

 The temporal information is followed by one or more variable length ASCII

newline separated text fields detailing specific events. The last field always

ends with a null byte.

The following diagram shows the packet structure.

struct XrdXrootdMonGS;

 {struct XrdXrootdMonMonHeader hdr;

 int tBeg; // UNIX time of first entry

 int tEnd; // UNIX time of last entry

 kXR_int64 sID; // Provider identification

 }

*

* 1 or more newline separated ASCII text strings with the last

* such string ending with a null byte.

*

The content of each text string is specific to the plug-in that generates the

information. The plug-in chooses which format to use (e.g. CGI, JSON, xml, etc).

The sID identifies who generated the information. In host byte order, the first eight

bits contain the provider’s identification while the last 48 bits contain the server’s

fingerprint. The table below lists possible providers:

Provider (i.e. plug-in) Contents of 1

st
 8 bits

Cache Context Manager (ccm) XROOTD_MON_GSCCM

Proxy File Cache (pfc) XROOTD_MON_GSPFC

TCP connection monitor XROOTD_MON_GSTCP

Third party copy XROOTD_MON_GSTPC

Monitoring

50 31-Jamiary-2024 Monitoring

You can extract the provider’s identifier with the following expression
(ntohll(sID) >> XROOTD_MON_PIDSHFT) & XROOTD_MON_PIDMASK

You can extract the server’s identifier with the following expression
ntohll(sID) & XROOTD_MON_SIDMASK

Definitions of the structures and symbols described here can be found in the

“XrdXrootdMonData.hh” file.

While the g-stream can be fed by many different information providers no UDP

packet will ever contain information from more than a single provider. However,

the packets may be intermixed and you will need to separate the streams and

sequentially order the packets using the sID, the time stamps, and the packet

sequence number. Be aware that each provider’s g-stream uses its own packet

sequence. Hence, each provider’s stream must be ordered independently.

Since information providers define the format of the data format contained in the

UDP packet, the actual contents is described in the manual associated with the

provider, as follows:

Provider ID Manual

XROOTD_MON_GSCCM This plug-in is not a core component.

XROOTD_MON_GSPFC Proxy Storage Services Reference

XROOTD_MON_GSTCP This plug-in is not a core component.

XROOTD_MON_GSTPC Xrd/Xrootd Configuration Referebce

 Monitoring

Monitoring 31-January-2024 51

3.5.1 Alternative g-Stream Headers

g-streams can be configured to send packet headers as a CGI query string or a JSON

object. Both are text-only formats. When configured, the stream’s payload is prefixed

by the following header (dflthdr and srchdr are described in alternative default

header section). The g-stream can also generate text-only versions of the ident and

map messages. Be sure to review those.

CGI: dflthdr[srchdr]&gs.type=type&gs.tbeg=tbeg&gs.tend=tend\n

dflthdr: code=g&pseq=pseq&stod=stod&sid=sid

JSON: {dflthdr[,"src":{srchdr}],gsinfo}\n

dflthdr: "code":"g","pseq":pseq,"stod":stod,"sid":sid

gsinfo: "gs":{"type":type,"tbeg":tbeg,"tend":tend}

Alternative Header for g-stream Payload

Where:

Token Explanation

type The g-stream generating the message and is one of:

C – generated by the pfc plug-in (i.e. cache)

M – generated by the ccm plug-in (i.e. cache context management)

T – generated by the tcpmon plug-in

tbeg UNIX time of first payload entry.

tend UNIX time of last payload entry.

The packet payload (i.e. data following the header’s newline character) consists of

one or more newline separated ASCII text strings with the last such string ending

with a null byte.

Monitoring

52 31-Jamiary-2024 Monitoring

3.5.2 Cache g-Stream

The Cache g-Stream (i.e. ‘C’ type packets) produces an event packet when a cached file is

fully closed. Below is a sample of a Cache report.

{ "event":"file_close",

 "lfn":"/store/user/matevz/xrdmon-far/xmfar-2020-03.root",

 "size":2446541517,\

 "blk_size":131072,

 "n_blks":18666,

 "n_blks_done":6784,

 "access_cnt":4

 ,"attach_t":1688057096,

 "detach_t":1688057104,

 "remotes":["gftp-7.t2.ucsd.edu:1095"],

 "b_hit":865075200,

 "b_miss":24051712,

 "b_bypass":0,

 "n_cks_errs":0

}

Key Type Meaning of Value

access_cnt ulong Number of IO objects that were attached to the file during the

time the file was opened.

attach_t int64 Epoch when the first IO object was attached to the file (i.e. the

file was first opened).

b_bypass int64 Bytes served in bypass mode (i.e. directly from the origin).

b_hit int64 Bytes served from the cache (disk or RAM).

b_miss int64 Bytes served that had to be fetched from the remote.

blk_size int Block size used by the cache in bytes.

detach_t int64 Epoch when the last IO object was detached from the file.

event char The reason for event. When a record is emitted at file close

time the string value is "file_close". Currently, this is the only

event type.

lfn char LFN of the file

n_blks int Total number of blocks.

n_blks_done int Number of blocks already downloaded and in the cache.

n_cks_errs int Number of checksum errors that occurred during remote

reads.

remotes char List of remote origins where the file was read from during the

time the file was opened.

size int64 File size in bytes.

 Monitoring

Monitoring 31-January-2024 53

3.5.3 TPC g-Stream

The TPC g-stream provides information on completed or failed third party copy

requests/ Below is a sample of a JSON packet. The subsequent table explains the

key-value pairs. Below is a sample packet for an xroot Third Party Copy.

{

 "TPC": "xroot",

 "Client": "abh.47358:24@cent7a.slac.stanford.edu",

 "Xeq": {

 "Beg": "2022-04-01T04:22:15.765838Z",

 "End": "2022-04-01T04:22:15.891503Z",

 "RC": 0,

 "Strm": 1,

 "Type": "pull",

 "IPv": 6

 },

 "Src": "xroot://cent7b.slac.stanford.edu:1094//tmp/abhfile",

 "Dst": "xroot://griddev08.slac.stanford.edu:1094//tmp/abhfile",

 "Size": 6293536

}

Key Sub Key Type Meaning of Value

Client char ID or requesting client.

Dst char Destination URL for the data.

Size number Total number of bytes copied.

Src char Source URL of the data.

TPC char Protocol used for the copy (i.e. “http” or “xroot”).

Xeq Beg ISO 8601 Date and time when the copy was started.

Xeq End ISO 8601 Date and time when the copy finished.

Xeq IPv number Internet protocol version used to the copy (i.e. 4 or 6).

Xeq RC number Ending return code; zero means success o/w failure.

Xeq Strm number Number of streams used for the copy.

Xeq Type char Data flow direction: “pull” from source by

destination or “push” to destination from source.

The client ID is formatted as username.pid:sfd@host where username is an arbitrary

name supplied by the client, pid is the client’s process ID, and sfd is the server’s

socket file descriptor number servicing the client, and host is the name or IP address

of the node where the client resides. Together these form a relatively unique client

identification.

 Monitoring

Monitoring 31-January-2024 55

3.6 The r-stream (redir)

struct XrdXrootdMonRedir

 {union { kXR_int32 Window;

 struct {kXR_char Type;

 kXR_char Dent;

 kXR_int16 Port;

 } rdr;

 } arg0;

 union {kXR_unt32 dictid;

 kXR_int32 Window; } arg1;

 };

struct XrdXrootdMonBurr

 { XrdXrootdMonHeader hdr;

 union {kXR_int64 sID;

 kXR_char sXX[8];

 };

 XrdXrootdMonRedir info[];

 };

The MonRedir record is highly encoded and repeated as often as possible in a single

datagram, as shown in the MonBurr structure. Each instance of info represents a

server identification record‡‡, a redirect record, or a window timing mark. All binary

data appears in network byte order. The info[].arg0.Type character identifies the

type of information the entry contains. The character is bit encoded and should be

tested for the proper bit values to determine the type of record, as follows:

Definition Value Meaning
XROOTD_MON_REDTIME 0x00 Window timing mark§§
XROOTD_MON_REDIRECT 0x8x Redirect event generated by cmsd
XROOTD_MON_REDLOCAL 0x9x Redirect event generated by xrootd

XROOTD_MON_REDSID 0xf0 Server identification

XROOD_MON_REDIRECT and XROOTD_MON_REDLOCAL entries are

variable length but always occupy and integral multiple of 8 characters (i.e., are

padded out to always end on an 8-byte boundary). The “info[].arg0.Dent” indicates

‡‡

 The server identification record always appears after the header and is never repeated in the packet.
§§

 Window timing marks are indicated when the high order bit is not set.

Monitoring

56 31-Jamiary-2024 Monitoring

how many 8-byte words, less one, in the record. All other records occupy exactly

eight bytes and the “Dent” field is used for other purposes.

Additionally, the low order four bits of the XROOD_MON_REDIRECT and

XROOTD_MON_REDLOCAL entry codes are modified by inserting the operation

code in the last four bits of the symbol value. You can obtain the operation that

caused the redirect by looking at the last four bits and comparing it to the following

symbols.

Definition Value Meaning
XROOTD_MON_CHMOD 0x01 Change file mode.
XROOTD_MON_LOCATE 0x02 Locate file or directory.

XROOTD_MON_OPENDIR 0x03 Open director for reading.
XROOTD_MON_OPENC 0x04 Open file for creation.
XROOTD_MON_OPENR 0x05 Open file for reading.
XROOTD_MON_OPENW 0x06 Open file for writing.

XROOTD_MON_MKDIR 0x07 Create a directory or path.
XROOTD_MON_MV 0x08 Rename a file or directory.
XROOTD_MON_PREP 0x09 Prepare request.
XROOTD_MON_QUERY 0x0a Query information request.

XROOTD_MON_RM 0x0b Remove a file.
XROOTD_MON_RMDIR 0x0c Remove a directory.
XROOTD_MON_STAT 0x0d Stat a file or directory.
XROOTD_MON_TRUNC 0x0e Truncate a file.

Field Contents For Redirect Entries
info[].arg0.Type XROOTD_MON_REDIRECT or

XROOTD_MON_REDLOCAL plus modifier. See

modifier table for operation being performed.

info[].arg0.Dent Number of 8-byte entries used by this entry less 1.
info[].arg0.Port The server’s port number to which the client is

being redirected to.

info[].arg1.dictid The client’s dictionary ID (‘u’ map message).
info[].arg1+4 The server’s name and path being accessed. It

always ends with a null byte.

 Monitoring

Monitoring 31-January-2024 57

The server’s “name” and target path follow the eight byte entry. The number of

eight byte words occupied by this information is recorded in “info[].arg0.Dent”.

This always appears as a null terminated character string with the following format:

 [servername]:pathname

 servername: dnsname | ipv4address | [ipv6address]

When the server’s name is not present in the record, it means that the client has been

directed to a physical file on the client’s host whose physical name is pathname (i.e.

the pfn). Otherwise, pathname is the logical file name (i.e. lfn) used by the client.

Field Contents For Window Entries

info[].arg0.Type XROOTD_MON_REDTIME
info[].arg0.Window Window size in the low order 24 bits.
info[].arg1.Window Unix time of the new window.

Since each datagram is self-consistent, a window entry will always appear before

any redirect entries (i.e. the first entry after the server identification entry) with he

last entry being another window entry. Additional window entries may be placed

within the message should redirect requests cross window boundaries within the

same data-gram. Because request timing is variable, window start and end times are

rarely adjacent. That is, a window may end at time x but the new window may start

at a time that is many windows away from the end time. This is because xrootd

compresses adjacent empty windows.

To obtain the end time of a window you must add info[].arg0.Window (low order

24 bits) to the previous info[].arg1.Window. While this should not be done for the

first window entry, it should be done for all subsequent window entries.

A window entry may also be forced should the buffer fill or the connection is closed

before the window actually ends. In this case, the window may be substantially

smaller than configured window size. The receiver should not count that each

window will be the same size. When this happens, the info[last-1].arg1.Window

value will be the same as the info[last].arg1.Window value. The receiver should

internally time-stamp each entry using an appropriate distribution curve within the

reported window.

Monitoring

58 31-Jamiary-2024 Monitoring

Field Contents For Server Identification Entries
info[].arg0.Type XROOTD_MON_REDSID
info[] Server’s identification in the low order 48 bits.

The server’s identifier appears in each XROOTD_MON_REDSID entry. This is

identical to the sid in the userid in map entries. It is encoded in the lower 48 bits of

the first 8 bytes and always appears once after the header. You can extract the sid

with the following statement
ntohll(sID & XROOTD_MON_SIDMASK)

Definitions of the structures and symbols described here can be found in the

“XrdXrootdMonData.hh” file.

3.6.1 Understanding Multiple Redirection Streams

In order to maximize parallelism, xrootd maintains several redirection monitoring

streams, assigning each request to the first available stream. The number of streams

may be specified on the xrootd.monitor directive. The default is 3 streams.

Because multiple streams exist, event data ordering is non-deterministic within the

monitoring window. That is, it is impossible to tell the order of a specific sequence of

requests within a window once the streams are merged.

 Monitoring

Monitoring 31-January-2024 59

3.7 The t-stream (files, io, and iov)

The t-stream is produced when the files, io, or iov options are used on the

xrootd.monitor directive. The information contained in this stream is a virtual

superset of he information in the f-stream. This is because all values in the f-stream

can be derived from the t-stream. However, the t-stream also provides the ability to

obtain insights on data access pattern information that is not available elsewhere.

However, this comes at a substantial cost since all data seeks are reported. This

results in a substantial amount of monitoring information and about 7% degradation

in server performance. In almost all cases, the f-stream provides sufficient

monitoring information.

In order to maintain a low overhead, each connection collects its own I/O event data

in a local buffer and sends the data when the buffer is full or when the connection is

closed. Non-I/O events (e.g., open, close, etc) are collected globally in a separate

stream while redirect events are collected globally as one or more separate streams.

A stream buffer is sent when it is full or when the specified timeout occurs. I/O and

non-I/O events may be intermixed when the configuration specifies a particular

recipient for such a combination. Low overhead is also maintained by not time-

stamping each event. That is, the information is collected within a statistical

window. While the order of events is maintained, it is impossible to tell precisely

when the event actually happened within this window. The receiver should

uniformly distribute the events across the window.

Since each connection maintains its own local buffer of I/O events, multiple

datagrams may be sent with disparate, possibly overlapping, windows. The receiver

must merge all of these windows into a uniform coherent time stream. This is

possible because precise times are always given for the start and end of the window

in which the events were collected. Care should be taken to appropriately order the

packets, as UDP packets can arrive in any order. To assist in ordering packets, each

packet carries a time-stamp as well as a sequence number so that the receiver can

easily order packets as well as discover if any packets were lost due to network

congestion.

The next page illustrates one a typical t-stream. It also illustrates the physical and

logical sequence of packets from a single server. You should note that the window

start and end times do not correlate with the packet send time. Hence, packet

reordering is typically necessary to get a linear view of time.

Monitoring

60 31-Jamiary-2024 Monitoring

Packet physical order:

Packet 0: t=4 seq=2 window=tod+a:tod+b <I/O requests>

Packet 1: t=4 seq=1 window=tod+x:tod+y <I/O requests>

Packet 2: t=1 seq=0 window=tod+j:tod+k <I/O requests>

Packet 3: t=5 seq=3 window=tod+d:tod+e <I/O requests>

Packet logical order:

Packet 2: t=1 seq=0 window=tod+j:tod+k <I/O requests>

Packet 1: t=4 seq=1 window=tod+x:tod+y <I/O requests>

Packet 0: t=4 seq=2 window=tod+a:tod+b <I/O requests>

Packet 3: t=5 seq=3 window=tod+d:tod+e <I/O requests>

Window logical order:

Packet 0: t=4 seq=2 window=tod+a:tod+b <I/O requests>

Packet 3: t=5 seq=3 window=tod+d:tod+f <I/O requests>

Packet 2: t=1 seq=0 window=tod+j:tod+k <I/O requests>

Packet 1: t=4 seq=1 window=tod+x:tod+y <I/O requests>

In order to maximize the amount of information that can be stored in a single data-

gram as well as to minimize redundancy, a dense encoding scheme is used. The

messages are described in the following sections.

3.7.1 Monitor Trace Message Format

struct XrdXrootdMonTrace

 {union {kXR_int64 val;

 kXR_char id[8];

 kXR_int16 sVal[4];

 kXR_unt32 rTot[2];

 } arg0;

 union {kXR_int32 buflen;

 kXR_unt32 HostID;

 kXR_unt32 wTot;

 kXR_int32 Window;

 } arg1;

 union {kXR_unt32 dictid;

 kXR_int32 Window;

 } arg2;

 };

struct XrdXrootdMonBuff

 {XrdXrootdMonHeader hdr;

 XrdXrootdMonTrace info[];

 };

 Monitoring

Monitoring 31-January-2024 61

The MonTrace record is highly encoded and repeated as often as possible in a single

datagram, as shown in the MonBuff structure. Each instance of info represents a

read, write, open, close request, application id, or a window timing mark. All binary

data is appears in network byte order. The info[].arg0.id[0] character identifies the

type of information the entry contains, as follows:

Definition Value Meaning
XROOTD_MON_OPEN 0x80 File has been opened
XROOTD_MON_READV 0x90 Details for a kXR_readv request

XROOTD_MON_READU 0x91 Unpacked details for kXR_readv
XROOTD_MON_APPID 0xa0 Application provided marker
XROOTD_MON_CLOSE 0xc0 File has been closed
XROOTD_MON_DISC 0xd0 Client has disconnected

XROOTD_MON_WINDOW 0xe0 Window timing mark
---- <=0x7f

 Read or write request

Some records contain additional flags. The definition and meaning of these flags is

described below:

Definition Value Meaning
XROOTD_MON_FORCED 0x01 Entry due to forced disconnect.

XROOTD_MON_BOUNDP 0x02 Entry for a bound path.

Entries in the I/O and non-I/O event streams are always of fixed size (i.e., 16

characters). The following fields are used for each type of record:

Field Contents For Appid Request Entries
info[].arg0.id[0] XROOTD_MON_APPID
info[].arg0.id[1…3] Reserved.

info[].arg0.id[4…15] Up to 12 characters of application identification.

Indicates that if the high order b it is zero, then this is a read/write request.

Monitoring

62 31-Jamiary-2024 Monitoring

Field Contents For Close Request Entries

info[].arg0.id[0] XROOTD_MON_CLOSE
info[].arg0.id[1] Number of bits Info[].arg0.rTot[1] has

been right shifted to fit into a 32-bit unsigned int.

info[].arg0.id[2] Number of bits Info[].arg1.wTot has been

right shifted to fit into a 32-bit unsigned int.
info[].arg0.id[3] Reserved.

info[].arg0.rTot[1] Scaled number of bytes read from the file.
info[].arg1.wTot Scaled number of bytes written to the file.
info[].arg2.dictid The file path’s dictionary ID (‘d’ map message).

Field Contents For Disconnect Request Entries
info[].arg0.id[0] XROOTD_MON_DISC
info[].arg0.id[1] May contain XROOTD_MON_BOUNDP and

XROOTD_MON_FORCED
info[].arg0.id[2…7] Reserved.
info[].arg1.buflen Number of seconds that client was connected.

info[].arg2.dictid The client’s dictionary ID (‘u’ map message).

Field Contents For Open Request Entries
info[].arg0.id[0] XROOTD_MON_OPEN
info[].arg0.id[1…7] Size of the file in bytes.

info[].arg1 Reserved.
info[].arg2.dictid The file path’s dictionary ID (‘d’ map message).

Field Contents For Read/Write Request Entry

info[].arg0.val Read or write offset (see below).
info[].arg1.bufflen Length of the read when non-negative. When

negative, this is the length of a write request.
info[].arg2.dictid The file path’s dictionary ID (‘d’ map message).

Field Contents For Readv Request Entry

info[].arg0.id[0] XROOTD_MON_READU
info[].arg0.id[1] readv request identifier
info[].arg0.sVal[1] Number of elements in the readv vector
Info[].arg0.rTot[1] Reserved.

info[].arg1.bufflen Length of the read.
info[].arg2.dictid The file path’s dictionary ID (‘d’ map message).

 Monitoring

Monitoring 31-January-2024 63

Field Contents For Readv Request Entry

info[].arg0.id[0] XROOTD_MON_READV |
info[].arg0.id[1] readv request identifier
info[].arg0.sVal[1] Number of elements in the readv vector
Info[].arg0.rTot[1] Reserved.

info[].arg1.bufflen Length of the read.
info[].arg2.dictid The file path’s dictionary ID (‘d’ map message).

Field Contents For Window Entry

info[].arg0.id[0] XROOTD_MON_WINDOW
info[].arg0.id[1] Reserved.
info[].arg0.val Server identifier in the low order 48 bits.
info[].arg1.Window Unix time of when the previous window ended.

info[].arg2.Window Unix time of when this window has started.

Since each datagram is self-consistent, a trace message will always start and end

with a window entry. Additional window entries may be placed within the record

should requests cross window boundaries within the same data-gram. Because

request timing is variable, window start and end times are rarely adjacent. That is, a

window may end at time x but the new window may start at a time that is many

windows away from the end time. This is because xrootd compresses adjacent

empty windows.

A window entry may also be forced should the buffer fill or the connection is closed

before the window actually ends. In this case, the window may be substantially

smaller than configured window size. The receiver should not count that each

window will be the same size. The receiver should internally time-stamp each entry

using an appropriate distribution curve within the reported window.

The only difference between XROOTD_MON_READU and

XROOTD_MON_READV entries is that the XROOTD_MON_READU indicates

that individual read entries described by XROOTD_MON_READU follow the

entry. The number of read entries equals the number specified in info[].arg0.sVal[1].

That is, the reads in the readv request vector are unpacked and presented as

individual reads. This happens with the iov option is specified on the

xrootd.monitor directive. This allows you to associate read entries with a particular

readv request.

Monitoring

64 31-Jamiary-2024 Monitoring

A single readv request may generate multiple XROOTD_MON_READU or

XROOTD_MON_READV records. A record is generated whenever the vector

switches from reading one file to another file. The information in the record then

pertains to a file identified by the dictid. Multiple entries associated with a single

readv request will always have the same request identifier placed in

info[].arg0.id[1]. Request identifiers cycle every 256 readv requests.

An XROOTD_MON_READV entry may be followed by multiple read entries. This

happens with the iov option was specified on the xrootd.monitor directive. The read

entries detail each element in the readv vector. The preceding

XROOTD_MON_READV entry indicates how many read entries follow. This

allows you to associate read entries with a particular readv request. Request

identifiers cycle every 256 readv requests.

The server’s identifier appears in each XROOTD_MON_WINDOW entry. This is

identical to the sid in the userid in map entries. It is encoded in the lower 48 bits of

the first 8 bytes. You can extract the sid with the following statement
ntohll(info[].arg0.val & XROOTD_MON_SIDMASK)

 Monitoring

Monitoring 31-January-2024 65

4 Document Change History

14 July 2009

 This manual was introduced.

16 July 2009

 Added example on mpxstats.

17 February 2010

 Correct the xrd.report directive example.

 Move toe id from statistics end-tag to the sgen part.

24 May 2011

 Correct description of the Monitor Map Message. Specifically,

remove the ‘v’ record and expand on the ’u’; record.

14 June 2011

 Describe the cms protocol summary report information.

 Indicate which int and int64 values are increasing or variable.

29 June 2011

 Add dly, err and rdr statistics to the xrootd protocol summary data.

 Indicate that aio.num, aio.rej, ops.pr, ops.rd and ops.wr values are

actually int64 in size in the xrootd protocol summary data.

5 October 2011

 Describe the &g and &m fields in the authinfo monitor record.

-------------- Release 3.1.0

10 October 2011

 Document the new XROOTD_MON_READV monitor record.

 Document the new ’m’, and ‘p’ map records.

 Describe additional information added to the ’s’ map record.

Monitoring

66 31-Jamiary-2024 Monitoring

25 October 2011

 Describe the migration (‘m’), staging (‘s’), and purging (‘p’)

monitor records.

 Describe the new option on the xrootd.monitor directive that

enables migration and purging monitor records.

 Describe the xpd option on the frm.xfr.copycmd directive that

allows the transfer script to add monitoring information to the

migration and staging records.

 Document <lgn> tag in the xrootd summary statistics.

 Describe the XROOTD_MON_BOUNDP and the

XROOTD_MON_FORCED flags that may appear in the

disconnect record.

3 November 2011

 Document the new XROOTD_MON_REDIRECT and

XROOTD_MON_REDHOST monitor records.

3 December 2011

 Document the new server identification map (‘=’) record.

 Combine the migration (‘m’) and staging (‘s’) map records under a

single transfer (‘x’) map record.

13 December 2011

 Add more descriptive information about redirection events.

 Document changes in the XROOTD_MON_REDIRECT and

XROOTD_MON_REDHOST monitor record.

14 January 2012

 Re-implement the redirection monitoring data to make it easier to

process. The record format and codes have completely changed

since the last issue of this document.

-------------- Release 3.1.1

24 April 2012

 Document third party copy statistics in the ofs summary record.

 Correct types in the redirect monitoring section.

 Monitoring

Monitoring 31-January-2024 67

-------------- Release 3.2.0

-------------- Release 3.2.1

-------------- Release 3.2.2

-------------- Release 3.2.3

-------------- Release 3.2.4

22 September 2012

 Document the f-stream (fstat option).

 Document the xrootd.ops.rs and xrootd.ops.rv counters in the

xrootd summary data.

 General re-ordering of the manual to improve comprehension.

-------------- Release 3.2.5

22 October 2012

 Document the site name information is the summary record as well

as in the server’s identification record.

26 October 2012

 Document the XROOTD_MON_READU detailed entry.

-------------- Release 3.2.6

-------------- Release 3.2.7

15 December 2012

 Document the revised format of the f-stream (fstat option).

15 January 2013

 Document the isDisc f-stream (fstat option) record type.

17 June 2014

 Document the &x and &y cgi tags in the user identification detailed

map record.

21 April 2016

 Document the sID member in XrdXrootdMonFileTOD structure.

 Add admonition to always use the XrdXrootdMonFileHdr::recSize

to skip to the next record as structure lengths may change.

Monitoring

68 31-Jamiary-2024 Monitoring

-------------- Release 4.0.0

7 July 2014

 Correct mistakes in the user identification record.

 Document the fact that the user identification also includes the

communication protocol (started in R4).

17 September 2018

 Document the “I” tag in the loginfo portion of the “u” mapping

record.

-------------- Release 5.0.0

1 May 2019

 Document the g-stream.

2 December 2019

 Document the “cache” and “pss” summary statistics.

20 August 2020

 Document the g-stream and optional CGI and JSON headers.

15 March 2022

 Document the U map record.

 Document the tpc g-stream.

21 March 2022

 Document the TPC g-stream.

26 June 2023

 Document the T monitor map message.

 Document the Cache g-stream.

 Update TPC g-stream section (minor corrections).

31 January 2024

 Correct documentation on the definition of pid and sid in userid as

reported in the map message.

