

The Scalla-xrootd Protocol
Version 2.9.9

Andrew Hanushevsky

3-October-2012

xrootd Protocol Version 2.9.9 Page: 2

©2004-2012 by the Board of Trustees of the Leland Stanford, Jr., University
All Rights Reserved

Produced under contract DE-AC02-76-SFO0515 with the Department of Energy

This code is available under a GNU Lesser General Public license.

For LGPL terms and conditions see http://www.gnu.org/licenses/

http://www.gnu.org/licenses/

 Contents

xrootd Protocol Version 2.9.9 Page: 3

1 Contents
1 Contents .. 3
2 Request/Response Protocol ... 5

2.1 Format of Client-Server Initial Handshake .. 5
2.2 Data Serialization ... 6
2.3 Client Request Format ... 9

2.3.1 Valid Client Requests ...10
2.3.2 Valid Client Paths ...11
2.3.3 Client Recovery From Server Failures ...11

2.4 Server Response Format ..13
2.4.1 Valid Server Response Status Codes ..14
2.4.2 Server kXR_attn Response Format ...15

2.4.2.1 Server kXR_attn Response for kXR_asyncab Client Action 17
2.4.2.2 Server kXR_attn Response for kXR_asyncdi Client Action 18
2.4.2.3 Server kXR_attn Response for kXR_asyncgo Client Action 19
2.4.2.4 Server kXR_attn Response for kXR_asyncms Client Action 20
2.4.2.5 Server kXR_attn Response for kXR_asyncrd Client Action 21
2.4.2.6 Server kXR_attn Response for kXR_asynresp Client Action 23
2.4.2.7 Server kXR_attn Response for kXR_asyncwt Client Action 25

2.4.3 Server kXR_authmore Response Format ...26
2.4.4 Server kXR_error Response Format ...27

2.4.4.1 Server kXR_error Sub-Codes & Recovery Actions .. 29
2.4.5 Server kXR_ok Response Format ...31
2.4.6 Server kXR_oksofar Response Format ...32
2.4.7 Server kXR_redirect Response Format ..33
2.4.8 Server kXR_wait Response Format ..35
2.4.9 Server kXR_waitresp Response Format ...36

3 Detailed Protocol Specifications ...37
3.1 kXR_admin Request ...37
3.2 kXR_auth Request ..38
3.3 kXR_bind Request ..39
3.4 kXR_chmod Request ..40
3.5 kXR_close Request ..41
3.6 kXR_dirlist Request ..43
3.7 kXR_endsess Request ...45
3.8 kXR_getfile Request ...47

3.8.1 Multi-Stream File Retrieval ...48
3.9 kXR_locate Request ..49
3.10 kXR_login Request ...53
3.11 kXR_mkdir Request ..57
3.12 kXR_mv Request ...59
3.13 kXR_open Request ..61

3.13.1 Passing Opaque Information ..64
3.14 kXR_ping Request ..65
3.15 kXR_prepare Request ...67
3.16 kXR_protocol Request ..69
3.17 kXR_putfile Request ...71

3.17.1 Multi-Stream File Storage ..72
3.18 kXR_query Request ..73

3.18.1 KXR_query Checksum Cancellation Request ...75
3.18.2 KXR_query Checksum Request ..77

xrootd Protocol Version 2.9.9 Page: 4

3.18.3 KXR_query Configuration Request ..79
3.18.4 KXR_query Space Request ..81
3.18.5 KXR_query Statistics Request ...82
3.18.6 KXR_query Visa Request ...85
3.18.7 KXR_query Xattr Request ..87

3.19 kXR_read Request ...89
3.20 kXR_readv Request ..93
3.21 kXR_rm Request ...95
3.22 kXR_rmdir Request ..96
3.23 kXR_set Request ..97

3.23.1 Valid kXR_Set Values ...98
3.24 kXR_stat Request ..99
3.25 kXR_statx Request ..103
3.26 kXR_sync Request ..105
3.27 kXR_truncate Request ..107
3.28 kXR_unbind Request ..109
3.29 kXR_write Request ...110
3.30 kXR_verifyw Request ...111

4 The Security Framework ...113
4.1 Framework for Transport Layer Protocols ..117

5 Local Socket Administrative Protocol..119
5.1 Initiating an Administrative Session ..119
5.2 General Request Format ..119

5.2.1 Request Target Format ...120
5.2.1.1 Connection name format... 120

5.3 General Response Format ..121
5.3.1 Error Response Format ..121

5.4 Abort request for kXR_asyncab Client Action ..122
5.5 Close request ...123
5.6 cj request ..124
5.7 Cont request for kXR_asyncgo Client Action ...125
5.8 Disc request for kXR_asyncdi Client Action ...126
5.9 Login request (mandatory) ..127
5.10 Lsc request ...128
5.11 Lsd request ..129
5.12 Lsj request ..133
5.13 Msg request for kXR_asyncms Client Action ...134
5.14 Pause request for kXR_asyncwt Client Action ...135
5.15 Redirect request for kXR_asyncrd Client Action ...136

6 Document Change History ..137

Request/Response Protocol

xrootd Protocol Version 2.9.9 Page: 5

2 Request/Response Protocol

2.1 Format of Client-Server Initial Handshake

When a client first connects to the XRootd server, it must perform a special
handshake. This handshake will determine whether the client is communicating
with an XRootd server or a rootd server.

The handshake consists of the client sending 20 bytes, as follows:

 kXR_int32 0

 kXR_int32 0

 kXR_int32 0

 kXR_int32 4 (network byte order)
 kXR_int32 2012 (network byte order)

The first twelve bytes are zero. The next eight bytes correspond to a standard
rootd server protocol request (i.e., kROOTD_PROTOCOL). Both, rootd and
XRootd, servers will respond, as follows:

 rootd Response XRootd Response
 streamid: kXR_char smid[2]

 status: kXR_unt16 0

 msglen: kXR_int32 8 msglen: kXR_int32 rlen

 msgtype: kXR_int32 2012 msgval1: kXR_int32 pval
 msgval: kXR_int32 pval msgval2: kXR_int32 flag

Where:

smid is the initial streamid. The smid for the initial response is always two null

characters (i.e., ‘\0’);

rlen is the binary response length (e.g., 8 for the indicated response).

pval is the binary protocol version number.

flag is additional bit-encoded information about the server; as follows:
 kXR_DataServer - This is a data server.
 KXR_LBalServer - This is a load-balancing server.

xrootd Protocol Version 2.9.9 Page: 6

Notes
1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) The first four bytes of the reply determine whether a client is
communicating with rootd (has a value of 8) or XRootd (has a value of 0).

3) All twenty bytes must be received by the server at one time. All known
TCP implementations will guarantee that the first message is sent intact if
all twenty bytes are sent in a single system call. Using multiple system
calls for the first message may cause unpredictable results.

2.2 Data Serialization

All data sent and received is serialized (i.e., marshaled) in three ways:

1. Bytes are sent unaligned without any padding,
2. Data type characteristics are predefined (see table below), and
3. All integer quantities are sent in network byte order (i.e, big endian).

XRootd Type Sign Bit Length Bit Alignment Typical Host Type
kXR_char8 unsigned 8 8 unsigned char

kXR_unt16 unsigned 16 16 unsigned short

kXR_int32 signed 32 32 long
1

kXR_int64 signed 64 64 long long

Table 1: XRootd Protocol Data Types

Network byte order is defined by the Unix htons() and htonl() macros for host to
network short and host to network long, respectively. The reverse is defined by
the ntohs() and ntohl() macros. Many systems do not define the long long
versions of these macros. XRootd protocol requires that the POSIX version of
long long serialization be used, as defined in the following figures. The OS-
dependent isLittleEndian() function returns true if the underlying hardware
using little endian integer representation.

1
 As of this writing, the long type has taken on several meanings for 64-bit architectures. Some machines

define a long to be 64-bits and int 32-bits while some others reverse the definition.

Request/Response Protocol

xrootd Protocol Version 2.9.9 Page: 7

unsigned long long htonll(unsigned long long x)

 {unsigned long long ret_val;

 if (isLittleEndian())

 {*((unsigned long *)(&ret_val) + 1) =

 htonl(*((unsigned long *)(&x)));

 *(((unsigned long *)(&ret_val))) =

 htonl(*(((unsigned long *)(&x))+1));

 } else {

 *((unsigned long *)(&ret_val)) =

 htonl(*((unsigned long *)(&x)));

 *(((unsigned long *)(&ret_val)) + 1) =

 htonl(*(((unsigned long *)(&x))+1));

 }

 return ret_val;

 };

Figure 1: POSIX Host to Network Byte Order Serialization

unsigned long long ntohll(unsigned long long x)

 {unsigned long long ret_val;

 if (isLittleEndian())

 {*((unsigned long *)(&ret_val) + 1) =

 ntohl(*((unsigned long *)(&x)));

 *(((unsigned long *)(&ret_val))) =

 ntohl(*(((unsigned long *)(&x))+1));

 } else {

 *((unsigned long *)(&ret_val)) =

 ntohl(*((unsigned long*)(&x)));

 (((unsigned long)(&ret_val)) + 1) =

 ntohl(*(((unsigned long*)(&x))+1));

 }

 return ret_val;

 };

Figure 2: POSIX Network to Host Byte Order Serialization

xrootd Protocol Version 2.9.9 Page: 8

More compact and efficient, though OS restricted (i.e., Solaris and Linux),
versions of 64-bit network byte ordering routines are given in the following
figure.

#if defined(__sparc) || __BYTE_ORDER==__BIG_ENDIAN

#ifndef htonll

#define htonll(x) x

#endif

#ifndef ntohll

#define ntohll(x) x

#endif

#else

#ifndef htonll

#define htonll(x) __bswap_64(x)

#endif

#ifndef ntohll

#define ntohll(x) __bswap_64(x)

#endif

Figure 3: Network and Host Byte Ordering Macros

Client Requests Protocol

xrootd Protocol Version 2.9.9 Page: 9

2.3 Client Request Format

Requests sent to the server are a mixture of ASCII and binary. All requests, other
than the initial handshake request, have the same format, as follows:

 kXR_char streamid[2]

 kXR_unt16 requestid

 kXR_char parms[16]

 kXR_int32 dlen

 kXR_char data[dlen]

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

requestid
 is the binary identifier of the operation to be performed by the server.

parms are parameters specific to the requestid.

dlen is the binary length of the data portion of the message. If no data is

present, then the value is zero.

data are data specific to the requestid. Not all requests have associated data. If

the request does have data, the length of this field is recorded in the dlen
field.

Notes
1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) All XRootd client requests consist of a standard 24-byte fixed length
message. The 24-byte header may then be optionally followed by request
specific data.

3) Stream id’s are arbitrary and are assigned by the client. Typically these
id’s correspond to logical connections multiplexed over a physical
connection established to a particular server.

Protocol Client Requests

xrootd Protocol Version 2.9.9 Page: 10

4) The client may send any number of requests to the same server. The order
in which requests are performed is undefined. Therefore, each request
should have a different streamid so that returned results may be paired up
with associated requests.

5) Requests sent by a client over a single physical connection may be
processed in an arbitrary order. Therefore the client is responsible for
serializing requests, as needed.

2.3.1 Valid Client Requests

The following table lists all possible requests and their arguments. Grayed rows
represent requests that are not currently supported.

Requestid Login? Auth? Redirect? Arguments
kXR_admin yes yes no args
kXR_auth y n n authtype, authinfo
KXR_bind n n n sessid
kXR_chmod y y yes mode, path
kXR_close y y n fdnum
KXR_dirlist y y y path
KXR_endsess y y n sessid
kXR_getfile y y y* path
kXR_locate y y y path
kXR_login n n n userid, token
kXR_ls y y y options path
kXR_mkdir y y y mode, path
kXR_mv y y y old_name, new_name
kXR_open y y y* mode, flags, path
kXR_ping y n n
kXR_prepare y y n paths
kXR_protocol n n n
kXR_putfile y y y* mode, flags, path
kXR_query y y y args
kXR_read y y y fdnum, pathid, length, offset
kXR_readv y y y fdnum, pathid, length, offset
kXR_rm y y y path
kXR_rmdir y y y path
kXR_set y y y info
kXR_stat y y y path
kXR_statx y y n pathlist
kXR_truncate y y y Fdnum , length, offset, path
kXR_write y y y fdnum, pathid, length, offset, data
kXR_verifyw y y y fdnum, length, offset, data

Table 2: Valid Client Requests
*

*Only these requests may redirect a client from an XRootd server to a rootd server.

Client Requests Protocol

xrootd Protocol Version 2.9.9 Page: 11

2.3.2 Valid Client Paths

The XRootd server accepts only absolute paths where a path may be specified.
Relative paths must be resolved by the client interface prior to sending them to
XRootd. This means that the interface must handle a virtual “current working
directory” to resolve relative paths should they arise.

Path names are restricted to the following set of characters:

 Letters (upper or lower case),

 Digits (0-9), and

 Special characters: !@#%^_-+=:./

In general, paths may not contain shell meta-characters or imbedded spaces.

2.3.3 Client Recovery From Server Failures

A server failure should be recognized when the server unexpectedly closes it’s
TCP/IP connection. Should this happen, the client may recover all operations by
treating the termination of the connection as a redirection request (see page 33) to
the initial XRootd server for all streams associated with the closed TCP/IP
connections.

Because many clients are likely to be affected by a server failure, it is important
that clients pace their reconnection to the initial XRootd server. One effective
way to do this is to use the last three bits of the client’s IP address as the number
of seconds to wait before attempting a reconnection. It is up to the client to
determine either the number of times or the time window in which reconnections
should be attempted before failure is declared. Typical values are 16 attempts or
3 minutes, whichever is longer.

Note that it may not be possible to recover in this way for files that were opened
in update mode. Clients who do not provide proper transactional support
generally cannot recover via redirection for any read/write resources.

mailto:!@#%^_-+=:./

Server Responses Protocol

xrootd Protocol Version 2.9.9 Page: 13

2.4 Server Response Format

All responses, including the initial handshake response, have the same format, as
follows:

 kXR_char streamid[2]

 kXR_unt16 status

 kXR_int32 dlen

 kXR_char data[dlen]

Where:

streamid
 is the binary identifier that is associated with this request stream

corresponding to a previous request.

status is the binary status code indicating how the request completed. The next

section describes possible status codes.

dlen is the binary length of the data portion of the message. If no data is

present, then the value is zero.

data are data specific to the requestid. Not all responses have associated data. If

the response does have data, the length of this field is recorded in the dlen
field.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Since requests may be completed in any order, the ordering of responses
is undefined. The client must appropriately pair responses with requests
using the streamid value.

3) Unsolicited responses are server requests for client configuration changes
to make better use of the overall system. Since these responses do not
correspond to any request, the streamid value has no meaning.

4) Unsolicited responses must be immediately acted upon. They should not
be paired with any previous request.

Protocol Server Responses

xrootd Protocol Version 2.9.9 Page: 14

2.4.1 Valid Server Response Status Codes

The following table lists all possible requests and their arguments. Grayed rows
represent requests that are not currently supported.

Status Response Data
kXR_attn Parameters to direct immediate client action
kXR_authmore Authentication specific data
kXR_error Error number and corresponding ASCII message text
kXR_ok Depends on request (this is predefined to be the value 0)
KXR_oksofar Depends on request
kXR_redirect Target port number and ASCII host name
kXR_wait Binary number of seconds and optional ASCII message
kXR_waitresp Binary number of seconds

Notes

1) Any request may receive any of the previous status codes.
2) The following sections detail the response format used for each status

code.

Server Responses Protocol

xrootd Protocol Version 2.9.9 Page: 15

2.4.2 Server kXR_attn Response Format

 kXR_char pad[2]

 kXR_unt16 kXR_attn

 kXR_int32 plen

 kXR_int32 actnum

 kXR_char parms[plen-4]

Where:
plen is two bytes of padding required by the standard response format. These

two bytes can be ignored for this particular response code.

plen is the binary length of the parms portion of the message (i.e., the

subsequent bytes).

actnum
 is the binary action code describing the action that the client is to take.

These are:
 kXR_asyncav - The file or file(s) the client previously requested to be
 prepared are now available.
 kXR_asyncab - The client should immediately disconnect (i.e., close
 the socket connection) from the server and abort further
 execution.
 kXR_asyncdi - The client should immediately disconnect (i.e., close
 the socket connection) from the server. Parameters
 indicate when a reconnect may be attempted.
 kXR_asyncgo - The client may start sending requests. This code is sent
 to cancel the effects of a previous kXR_asyncwt code.
 kXR_asyncms - The client should send the indicated message to the
 console. The parameters contain the message text.
 kXR_asyncrd - The client should immediately disconnect (i.e., close the
 socket connection) and reconnect to the indicated
 server.
 kXR_asynresp - The client should use the response data in the message

to complete the request associated with the indicated
streamid.

 kXR_asynunav - The file or file(s) the client previously requested to be
 prepared cannot be made available.
 kXR_asyncwt - The client should hold off sending any new requests

 until the indicated amount of time has passed or until
 receiving a kXR_asyncgo action code.

Protocol Server Responses

xrootd Protocol Version 2.9.9 Page: 16

parms is the parameter data, if any, that is to steer client action.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Servers use the kXR_attn response code to optimize overall system

performance and to notify clients of any impending events. All responses
except for kXR_asynresp, do not correspond to any client request and
should not be paired up with any request.

3) When kXR_attn is received, the client must perform the requested action

and indicated by the actnum value.

Server Responses Protocol

xrootd Protocol Version 2.9.9 Page: 17

2.4.2.1 Server kXR_attn Response for kXR_asyncab Client Action

 kXR_char pad[2]

 kXR_unt16 kXR_attn

 kXR_int32 mlen

 kXR_int32 kXR_asyncab

 kXR_char msg[mlen-4]

Where:

mlen is the binary length of the following action code and message.

msg is the message to be sent to the terminal. The mlen value, less four,

indicates the length of the message. The ending null byte (‘\0’) is
transmitted and included in the message length.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Servers use the kXR_attn response code to optimize overall system
performance and to notify clients of any impending events. This response
does not correspond to any client request and should not be paired up
with any request.

3) When kXR_attn is received with the kXR_asyncab action code, the
client should close all physical connections, write the message (msg), if
any, to standard error, and terminate execution.

Protocol Server Responses

xrootd Protocol Version 2.9.9 Page: 18

2.4.2.2 Server kXR_attn Response for kXR_asyncdi Client Action

 kXR_char pad[2]

 kXR_unt16 kXR_attn

 kXR_int32 12

 kXR_int32 kXR_asyncdi

 kXR_int32 wsec

 kXR_int32 msec

Where:

wsec is the number of seconds the client should wait before attempting to

reconnect to the server.

msec is the maximum number of seconds the client should wait before

declaring reconnect failure.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Servers use the kXR_attn response code to optimize overall system

performance and to notify clients of any impending events. This response
does not correspond to any client request and should not be paired up
with any request.

3) When kXR_attn is received with the kXR_asyncdi action code, the
client should close the physical connection, wait wsec seconds, and
attempt to reconnect to the server.

4) If a server reconnect fails, the client should wait either an additional wsec
seconds or some other predetermined time and try again. If msec seconds
have gone since the initial wait and the client has not reconnected to the
server, a reconnect failure should be declared.

5) When a reconnect failure is declared, the client may either terminate the
program or perform an internal redirection to a load-balancing server.

6) A reconnect is essentially a delayed redirect to the same server. The
actions that must be carried out when reconnecting are identical to those
that must be performed when reconnecting to a different server. Refer to
the description of the kXR_asyncrd action for the set steps that the client
must take to successfully reconnect.

Server Responses Protocol

xrootd Protocol Version 2.9.9 Page: 19

2.4.2.3 Server kXR_attn Response for kXR_asyncgo Client Action

 kXR_char pad[2]

 kXR_unt16 kXR_attn

 kXR_int32 4

 kXR_int32 kXR_asyncgo

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Servers use the kXR_attn response code to optimize overall system
performance and to notify clients of any impending events. This response
does not correspond to any client request and should not be paired up
with any request.

3) When kXR_attn is received with the kXR_asyncgo action code, the
client may resume sending requests to the server.

4) The kXR_asyncgo code is sent to cancel the effects of a previously sent
kXR_asyncwt code. Therefore, if the client is still waiting for the
kXR_asyncwt interval to expire, the interval should be cancelled.

Protocol Server Responses

xrootd Protocol Version 2.9.9 Page: 20

2.4.2.4 Server kXR_attn Response for kXR_asyncms Client Action

 kXR_char pad[2]

 kXR_unt16 kXR_attn

 kXR_int32 mlen

 kXR_int32 kXR_asyncms

 kXR_char msg[mlen-4]

Where:

mlen is the binary length of the following action code and message.

msg is the message to be sent to the terminal. The mlen value, less four,

indicates the length of the message. The ending null byte (‘\0’) is
transmitted and included in the message length.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Servers use the kXR_attn response code to optimize overall system
performance and to notify clients of any impending events. This response
does not correspond to any client request and should not be paired up
with any request.

3) When kXR_attn is received with the kXR_asyncms action code, the
client should simply write the indicated message to the terminal.

Server Responses Protocol

xrootd Protocol Version 2.9.9 Page: 21

2.4.2.5 Server kXR_attn Response for kXR_asyncrd Client Action

 kXR_char pad[2]

 kXR_unt16 kXR_attn

 kXR_int32 plen

 kXR_int32 kXR_asyncrd

 kXR_int32 port

 kXR_char host[?token][plen-8]

Where:

plen is the binary length of the parameter portion of the message (i.e., the

subsequent bytes).

port is the binary port number to which the client must connect. If the value is

zero, the default XRootd port number must be used.

host is the ASCII name of the to which the client must connect. The host does

not end with a null (\0) byte.

token is an optional ASCII token that, when present, must be delivered to the

new host during the login phase, if one is needed. The token, if present, is
separated from the host by a single question mark. The token does not end
with a null (\0) byte.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Servers use the kXR_attn response code to optimize overall system
performance and to notify clients of any impending events. This response
does not correspond to any client request and should not be paired up
with any request.

3) When kXR_attn is received with the kXR_asyncrd action code, the

client should perform the following steps:
a. Decompose the response to extract the port number, host name, and

possible token value.
b. Physically close the connection to the current host, regardless of

type.
c. Establish a new physical connection with the indicated host at the

specified or default port number.

Protocol Server Responses

xrootd Protocol Version 2.9.9 Page: 22

d. Perform the initial handshake, login with token (see kXR_login

description), and authentication (see kXR_auth description).
e. Re-establish all open files, as needed. Previously opened files may

be re-opened all at once or when a request attempts to use the file.
f. Re-issue any requests that were sent to the previous server but have

not received a response.
4) Since XRootd allows multiple open files per physical connection, a

kXR_asyncrd response can become somewhat complicated to handle.

The client can re-open files immediately after a new connection is made or
can re-open files as they are needed. In either case, the client must:

g. Issue a kXR_open request using the same file name and options as
was originally used.

h. Use the returned file handle for all subsequent requests for that file
(i.e., substitute the new fhandle for the old fhandle).

5) An XRootd server will never redirect a physical connection to a rootd
server. This differs for logical connections where a logical connection may
be so redirected.

6) After 256 redirect responses within 10 minutes on the same physical
connection, the client should declare an internal system error since it is
obvious that effective work is not being performed.

Server Responses Protocol

xrootd Protocol Version 2.9.9 Page: 23

2.4.2.6 Server kXR_attn Response for kXR_asynresp Client Action

 kXR_char pad[2]

 kXR_unt16 kXR_attn

 kXR_int32 rlen

 kXR_int32 kXR_asynresp

 kXR_char reserved[4]

 kXR_char streamid[2]

 kXR_unt16 status

 kXR_int32 dlen

 kXR_char data[dlen]

Where:

rlen is the binary length of the following action code and response.

streamid
 is the stream identifier associated with a previously issued request that

received a kXR_waitresp response.

status is the binary status code indicating how the request completed. The codes

definitions are identical as to those described for synchronous responses.

dlen is the binary length of the data portion of the message. If no data is

present, then the value is zero.

data are data specific to the request. Not all responses have associated data. If

the response does have data, the length of this field is recorded in the dlen
field.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Servers use the kXR_attn response code to optimize overall system

performance and to notify clients of any impending events.
3) Unlike other asynchronous events, this response is associated with a

previous request and the response data must be used to complete that
request.

4) The rlen-dlen is always 16.

Protocol Server Responses

xrootd Protocol Version 2.9.9 Page: 24

5) When kXR_attn is received with the kXR_asynresp action code, the

client should remove the request paired with streamid from wait state and
complete it using the response data.

Server Responses Protocol

xrootd Protocol Version 2.9.9 Page: 25

2.4.2.7 Server kXR_attn Response for kXR_asyncwt Client Action

 kXR_char pad[2]

 kXR_unt16 kXR_attn

 kXR_int32 8

 kXR_int32 kXR_asyncwt

 kXR_int32 wsec

Where:

wsec is the number of seconds the client should wait before sending any more

requests to the server.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Servers use the kXR_attn response code to optimize overall system
performance and to notify clients of any impending events. This response
does not correspond to any client request and should not be paired up
with any request.

3) When kXR_attn is received with the kXR_asyncwt action code, the

client should queue any new requests (i.e., not send new requests) until
wsec seconds have elapsed.

4) While waiting, the client should still be receiving messages from the
server. It is possible for the server to send additional unsolicited responses
even after a kXR_asyncwt has been sent. For example, the server may
send a kXR_asyncgo request to cancel the effects of the kXR_asyncwt
request before the wsec interval has gone by.

Protocol Server Responses

xrootd Protocol Version 2.9.9 Page: 26

2.4.3 Server kXR_authmore Response Format

 kXR_char streamid[2]

 kXR_unt16 kXR_authmore

 kXR_int32 dlen

 kXR_char data[dlen]

Where:

streamid
 is the binary identifier that is associated with this request stream

corresponding to a previous request.

dlen is the binary length of the data portion of the message (i.e., the subsequent

bytes).

data is the data, if any, required to continue the authentication process.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Since requests may be completed in any order, the ordering of responses
is undefined. The client must appropriately pair responses with requests
using the streamid value.

3) The kXR_authmore response code is issued only for those authentication
schemes that require several handshakes in order to complete (e.g., .x500).

4) When a kXR_authmore response is received, the client must call the
appropriate authentication continuation method and pass it data, if
present. The output of the continuation method should be sent to the
server using another kXR_auth request. This handshake continues until
either the continuation method fails or the server returns a status code of
kXR_error or kXR_ok.

5) Refer to the description of the security framework for detailed
information.

Server Responses Protocol

xrootd Protocol Version 2.9.9 Page: 27

2.4.4 Server kXR_error Response Format

 kXR_char streamid[2]

 kXR_unt16 kXR_error

 kXR_int32 dlen

 kXR_int32 errnum

 kXR_char errmsg[dlen-4]

Where:

streamid
 is the binary identifier that is associated with this request stream

corresponding to a previous request.

dlen is the binary length of the data portion of the message (i.e., the subsequent

bytes).

errnum
 is the binary error number indicating the nature of the problem

encountered when processing the request.

errmsg
 is the human-readable null-terminated message that describes the error.

This message may be displayed for informational purposes.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Since the error message is null-terminated, dlen includes the null byte in
its count of bytes that were sent.

3) Since requests may be completed in any order, the ordering of responses
is undefined. The client must appropriately pair responses with requests
using the streamid value.

Server Responses Protocol

xrootd Protocol Version 2.9.9 Page: 29

2.4.4.1 Server kXR_error Sub-Codes & Recovery Actions

The following table lists possible error sub-codes included in the errnum field as
part of the kXR_error response:

Status

Meaning

Redirector

Recovery

Server

Recovery

kXR_ArgInvalid A request argument was not valid n/a n/a

kXR_ArgMissing Required request argument was not provided n/a n/a

kXR_ArgTooLong A request argument was too long (e.g., path) n/a n/a

kXR_Cancelled The operation was cancelled by the administrator n/a n/a

kXR_ChkLenErr The close length does not equal the file size n/a n/a

kXR_ChkSumErr The kXR_verifyw checksum does not match n/a n/a

kXR_FileLocked File is locked, open request was rejected n/a n/a

kXR_FileNotOpen File if not open for the request (e.g., read) n/a n/a

kXR_FSError The file system indicated an error n/a A

kXR_inProgress Operation already in progress B B

kXR_InvalidRequest The request code is invalid n/a n/a

kXR_IOError An I/O error has occurred n/a A

kXR_isDirectory Object being opened with kXR_open is a directory n/a n/a

kXR_NoMemory Insufficient memory to complete the request C B

kXR_NoSpace Insufficient disk space to write data n/a n/a

kXR_NotAuthorized Client is not authorized for the request n/a n/a

kXR_NotFile The object being opened with kXR_open is not a

file.

n/a n/a

kXR_NotFound The requested file was not found n/a D

kXR_noserver There are no servers available to process the request n/a n/a

kXR_ServerError An internal server error has occurred C A

kXR_Unsupported The request is valid but not supported n/a n/a

A. Go back to the redirector and ask for a different server. kXR_refresh

should not ÉÌɯÛÜÙÕÌËɯÖÕɯÈÕËɯɁÛÙÐÌËǻɂɯÖ×ÈØÜÌɯÝÈÓÜÌɯÚÏÖÜÓËɯÐÕËÐÊÈÛÌɯÛÏÌɯ

hostname of the failing server.

B. Generally, this represents a programming error. However, should an

operation subject to a callback response be retried prior to the callback,

ÛÏÐÚɯÚÛÈÛÜÚɯÊÖËÌɯÔÈàɯÉÌɯÙÌÛÜÙÕÌËȭɯ"ÓÐÌÕÛÚɯÚÏÖÜÓËɯÏÖÕÖÙɯÚÌÙÝÌÙɀÚɯÊÈÓÓÉÈÊÒɯ

requests and wait for a callback response. Therefore, this error can be

ignored as long as a callback is outstanding. Otherwise, it should be

treated as a fatal error.

C. If the redirector is replicated, a different redirector should be tried. If all

redirectors provide the same response, a fatal error should be reported. In

the case of intermediate redirectors (i.e., a redirector transferring the

request to another redirector), the recovery may be attempted by treating

the intermediate as a server and performing the action outline in A.

Protocol Server Responses

xrootd Protocol Version 2.9.9 Page: 30

D. Go back to the redirector and ask for a different server. kXR_refresh

should ÉÌɯÛÜÙÕÌËɯÖÕɯÈÕËɯɁÛÙÐÌËǻɂɯÖ×ÈØÜÌɯÝÈÓÜÌɯÚÏÖÜÓËɯÐÕËÐÊÈÛÌɯÛÏÌɯ

hostname of the failing server. This should normally be done only once.

Server Responses Protocol

xrootd Protocol Version 2.9.9 Page: 31

2.4.5 Server kXR_ok Response Format

 kXR_char streamid[2]

 kXR_unt16 kXR_ok

 kXR_int32 dlen

 kXR_char data[dlen]

Where:

streamid
 is the binary identifier that is associated with this request stream

corresponding to a previous request.

dlen is the binary length of the data portion of the message (i.e., the subsequent

bytes).

data is the result, if any, of the corresponding request.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Since requests may be completed in any order, the ordering of responses
is undefined. The client must appropriately pair responses with requests
using the streamid value.

3) The kXR_ok response indicates that the request fully completed and no
additional responses will be forthcoming.

Protocol Server Responses

xrootd Protocol Version 2.9.9 Page: 32

2.4.6 Server kXR_oksofar Response Format

 kXR_char streamid[2]

 kXR_unt16 kXR_oksofar

 kXR_int32 dlen

 kXR_char data[dlen]

Where:

streamid
 is the binary identifier that is associated with this request stream

corresponding to a previous request.

dlen is the binary length of the data portion of the message (i.e., the subsequent

bytes).

data is the result, if any, of the corresponding request.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Since requests may be completed in any order, the ordering of responses
is undefined. The client must appropriately pair responses with requests
using the streamid value.

3) The kXR_oksofar response indicates that the server is providing partial
results and the client should be prepared to receive additional responses
on the same stream. This response is primarily used when a read request
would transmit more data than the internal server segment size. Refer to
the kXR_getfile and kXR_read requests.

4) Sending requests using the same streamid when a kXR_oksofar status
code has been returned may produced unpredictable results. A client
must serialize all requests using the streamid in the presence of partial
results.

5) Any status code other than kXR_oksofar indicates the end of transmission

Server Responses Protocol

xrootd Protocol Version 2.9.9 Page: 33

2.4.7 Server kXR_redirect Response Format

 kXR_char streamid[2]

 kXR_unt16 kXR_redirect

 kXR_int32 dlen

 kXR_int32 port

 kXR_char host[?[opaque][?token]][dlen-4]

Where:

streamid
 is the binary identifier that is associated with this request stream

corresponding to a previous request.

dlen is the binary length of the data portion of the message (i.e., the subsequent

bytes).

port is the binary port number to which the client must connect. If the value is

zero, the default XRootd port number must be used.

host is the ASCII name of the to which the client must connect. The host does

not end with a null (\0) byte.

opaque is an optional ASCII token that, when present, must be delivered to the

new host as opaque information added to the file name2 associated with
the operation being redirected. The opaque, if present, is separated from
the host by a single question mark. The opaque does not end with a null
(\0) byte but may end with a question mark (see token below). Therefore,
opaque may never contain a question mark.

token is an optional ASCII token that, when present, must be delivered to the

new host during the login phase, if one is needed (i.e. established
connections to the specified host may be re-used without a login). The
token, if present, is separated from the host by a two question marks. The
first question mark may be followed by opaque information. If none is
present, another question mark immediately follows the first one. The
token does not end with a null (\0) byte.

2
 In the case of kXR_mv, two file names are present. The opaque information must be added to the second

of the two file names.

Protocol Server Responses

xrootd Protocol Version 2.9.9 Page: 34

Notes
1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Since requests may be completed in any order, the ordering of responses
is undefined. The client must appropriately pair responses with requests
using the streamid value.

3) After 256 redirect responses within 10 minutes on the same logical
connection, the client should declare an internal system error since it is
obvious that effective work is not being performed.

4) The client must be prepared to handle a redirect response at any time. A
redirect response requires that the client

i. Decompose the response to extract the port number, host name, and
possible token value.

j. Possibly close the connection of the current host, if the current host
is a data server and this is the last logical connection to the server.
Otherwise, if this is the first load-balancing server encountered in
the operation sequence, the connection should remain open since a
load-balancing server always responds with a redirect.

k. Establish a new logical connection with the indicated host at the
specified or default port number. If a physical connection already
exists and is session compatible with the new logical connection;
the existing physical connection should be reused and the next step
(i.e. handshake and login) should be skipped.

l. Perform the initial handshake, login with token (see kXR_login
description), and authentication (see kXR_auth description).

m. If the redirection occurred for a request using a file handle (i.e.,
fhandle) then a new file handle must be obtained.

i. A kXR_open request must be issued using the same file
name and options as was originally used.

ii. The returned file handle must be used for the request that is
to be re-issued as well as all subsequent requests relating o
the file.

n. Re-issue the request that was redirected.
5) Opaque data must be treated as truly opaque. The client should not

inspect nor modify the data in any way.

Server Responses Protocol

xrootd Protocol Version 2.9.9 Page: 35

2.4.8 Server kXR_wait Response Format

 kXR_char streamid[2]

 kXR_unt16 kXR_wait

 kXR_int32 dlen

 kXR_int32 seconds

 kXR_char infomsg[dlen-4]

Where:

streamid
 is the binary identifier that is associated with this request stream

corresponding to a previous request.

dlen is the binary length of the data portion of the message (i.e., the subsequent

bytes).

seconds
 is the maximum binary number of seconds that the client needs to wait

before re-issuing the request.

infomsg
 is the human-readable message that describes the reason of why the wait

is necessary. The message does not end with a null (\0) byte. This message
may be displayed for informational purposes.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Since requests may be completed in any order, the ordering of responses
is undefined. The client must appropriately pair responses with requests
using the streamid value.

3) The client should wait the indicated number of seconds and retry the
request.

4) Nothing prohibits the client from waiting for less time than the indicated
number of seconds.

Protocol Server Responses

xrootd Protocol Version 2.9.9 Page: 36

2.4.9 Server kXR_waitresp Response Format

 kXR_char streamid[2]

 kXR_unt16 kXR_waitresp

 kXR_int32 4

 kXR_int32 seconds

Where:

streamid
 is the binary identifier that is associated with this request stream

corresponding to a previous request.

seconds
 is the estimated maximum binary number of seconds that the client needs

to wait for the response.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Since requests may be completed in any order, the ordering of responses
is undefined. The client must appropriately pair responses with requests
using the streamid value.

3) The client should wait the indicated number of seconds for the response.
The response will be returned via an unsolicited response (kXR_attn with
kXR_asynresp) at some later time which may be earlier than the time
indicated in seconds. When the response arrives, the client must use the
response data to complete the request that received the kXR_waitresp.

4) Nothing prohibits the client from waiting for different time than the
indicated number of seconds. Generally, if no response is received after at
least seconds have elapsed; the client should treat the condition as a fatal
error.

 kXR_admin

xrootd Protocol Version 2.9.9 Page: 37

3 Detailed Protocol Specifications

3.1 kXR_admin Request

Purpose: Perform an administrative function.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_admin kXR_unt16 0

 kXR_char reserved[16] kXR_int32 ilen

 kXR_int32 rlen kXR_char resp[ilen]

 kXR_char reqs[rlen]

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

rlen is the binary length of the supplied request, reqs.

reqs is the request.

ilen is the binary length of the response, resp, that follows ilen.

resp is the response to the administrative request.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) The kXR_admin request is only valid for users who have successfully
performed a kXR_login operation in an administrative role (i.e., logged in
as administrator).

3) This request type is not currently supported. Use the local socket interface
protocol to execute administrative requests.

kXR_auth

xrootd Protocol Version 2.9.9 Page: 38

3.2 kXR_auth Request

Purpose: Authenticate client’s username to the server.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_auth kXR_unt16 0

 kXR_char reserved[12] kXR_int32 0

 kXR_char credtype[4]
 kXR_int32 credlen
 kXR_char cred[credlen]

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed akXR_int32 with any response to the request.

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

credtype
 the first four characters of the protocol name. If the protocol name is less

than four characters, the name should be null terminated.

credlen
 is the binary length of the supplied credentials, cred.

cred are the credentials used to provide authentication information.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Authentication credentials may be supplied by many means. The common
mechanism used by XRootd is to use the classes in the libXrdSec.so
library. See the “Authentication & Access Control Configuration
Reference” for more information.

3) Refer to the description of the security framework on how a client
authenticates to an XRootd server.

 kXR_dirlist

xrootd Protocol Version 2.9.9 Page: 39

3.3 kXR_bind Request

Purpose: Bind a socket to a pre-existing session.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_bind kXR_unt16 0

 kXR_char sessid[16] kXR_int32 1
 kXR_int32 0 kXR_char pathid

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

sessid is the session identifier returned by a previous kXR_login request.

pathid is the socket identifier associated with this connection. The pathid may be

used in subqsequent kXR_read, kXR_readv, and kXR_write requests to
indicate which socket should be used for a response or as a source of data.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) The sessid value should be treated as opaque data.
3) The socket issuing the kXR_bind request must neither have a session id

(i.e., be logged in) nor be already bound.
4) Once a socket is bound to a session, if may only supply data for

kXR_write requests or receive responses for kXR_read and kXR_readv
requests.

5) Should the client close a bound socket, the client should issue a
kXR_unbind request specifying the pathid of the socket that was just
closed. Failure to do so may cause future kXR_bind requests to fail.

6) Each login session is limited to the number of bound sockets. Use the
kXR_Qconfig sub-request code of kXR_query to determine the maximum
number of sockets that can be bound to a login session.

7) Bound sockets are meant to support parallel data transfer requests across
wide-area networks.

 kXR_chmod

xrootd Protocol Version 2.9.9 Page: 40

3.4 kXR_chmod Request

Purpose: Change the access mode on a directory or a file.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_chmod kXR_unt16 0

 kXR_char reserved[14] kXR_int32 0
 kXR_unt16 mode

 kXR_int32 plen
 kXR_char path[plen]

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

mode is the access mode to be set for path. The access mode is an “or’d”

combination of the following values:

Access Readable Writeable Executable
Owner kXR_ur kXR_uw not supported
Group kXR_gr kXR_gw not supported
Other kXR_or not supported not supported

plen is the binary length of the supplied path, path.

path is the path whose mode is to be set.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields must be initialized to binary zero.
2) No umask is applied to the specified mode.

kXR_close

xrootd Protocol Version 2.9.9 Page: 41

3.5 kXR_close Request

Purpose: Close a previously opened file, communications path, or path group.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_close kXR_unt16 0

 kXR_char fhandle[4] kXR_int32 0
 kXR_int64 fsize
 kXR_char reserved[4]

 kXR_int32 0

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

fhandle
 is the file handle value supplied by the successful response to the

associated kXR_open request.

fsize the size, in bytes, that the file is to have. The close operation fails and the

file is erased if it is not of the indicated size. An fsize of zero suppresses the
check.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) The fhandle value should be treated as opaque data.

 kXR_dirlist

xrootd Protocol Version 2.9.9 Page: 43

3.6 kXR_dirlist Request

Purpose: Enumerate the contents of a directory.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_dirlist kXR_unt16 0

 kXR_char reserved[16] kXR_int32 dlen
 kXR_int32 plen kXR_char dirname\n
 kXR_char path[plen] Å

 Å

 Å

 kXR_char 0

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

plen is the binary length of the supplied path, path.

path is the path of a directory whose entries are to be listed.

dlen is the binary length of the data that follows dlen.

dirent is an entry in the directory whose listing was requested.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) A directory may have multiple entries and the response contains all of the
entries.

3) Each directory entry is suffixed with a new-line character; except for the
last entry which is suffixed by a null character.

kXR_dirlist

xrootd Protocol Version 2.9.9 Page: 44

4) Since more entries may exist than is possible to send at one time, the
kXR_oksofar protocol may be used to segment the response. Under no
circumstances will a directory name be split across a response packet.

5) The server does not return the entries “.” And “..”.
6) An empty directory will return the eight-byte triplet {streamid, 0, 0}.

 kXR_dirlist

xrootd Protocol Version 2.9.9 Page: 45

3.7 kXR_endsess Request

Purpose: Terminate a pre-existing session.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_endsess kXR_unt16 0

 kXR_char sessid[16] kXR_int32 0
 kXR_int32 0

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

sessid
 is the session identifier returned by a previous kXR_login request.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) The sessid value should be treated as opaque data.
3) The socket issuing the kXR_endsess request must be logged in and,

optionally, authenticated.
4) If the sessid is all binary zeroes, the current session is terminated.
5) The server verifies that the process presenting the sessid actually received

it on a previous kXR_login.

 kXR_getfile

xrootd Protocol Version 2.9.9 Page: 47

3.8 kXR_getfile Request

Purpose: Retrieve a complete file.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_getfile kXR_unt16 status

 kXR_int32 options kXR_int32 dlen

 kXR_char reserved[8] kXR_int64 offset

 kXR_int32 buffsz kXR_char data[dlen-8]
 kXR_int32 plen

 kXR_char path[plen]

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

status is the ending status of this request. Only the following two status codes

indicate a normal ending:
 kXR_ok - All of the data has been transmitted with error.

 kXR_oksofar - Partial data has been transmitted without error;
 additional data should be expected on this stream.

options
 is a bit vector representing the options that are to apply to the file transfer.

The valid set of options are:
 kXR_md5file - Compute and transmit an MD5 checksum for the file.
 KXR_md5blok - Compute and transmit an MD5 checksum for each block.

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

buffsz is the maximum binary length to be transmitted per file segment (i.e.,

buffer size). If buffsz is zero, 65,544 (i.e., 64K+8) is used.

plen is the binary length of the supplied path, path.

path is the path of the file to be retrieved.

kXR_getfile

xrootd Protocol Version 2.9.9 Page: 48

dlen is the binary length of the data that follows with dlen never being greater

than buffsz.

offset is the binary offset of where data was located within the file. Negative

offsets indicate special non-file data is being transmitted. See the notes for
more information.

data is the data associated with the file.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Since a file may be much larger than the allowable buffer size, the file is
sent in buffsz segments until the whole file is sent. This is accomplished
using the kXR_oksofar status code. Each subsequent data segment is
transmitted using a {streamid, status, dlen, offset, data} response. The last
segment is indicated by a kXR_ok, if no error occurred.

3) Any status code other than kXR_oksofar indicates the end of
transmission.

4) Sending requests using the same streamid when a kXR_oksofar status
code has been returned may produced unpredictable results. A client
must serialize all requests using the streamid in the presence of partial
results.

5) When a 16-byte MD5 checksum is requested, it is transmitted either after
the complete file is transferred or after each block, as specified by the
options. An MD5 checksum will have a dlen of 24 and an offset of negative
one (i.e., -1).

6) MD5 block checksums are always sent on the same TCP/IP connection
that was used to send the block.

7) An empty file will return the eight-byte triplet {streamid, 0, 0}.
8) Empty files will not transmit MD5 checksums, even when so requested.
9) This request type is not currently supported.

3.8.1 Multi-Stream File Retrieval

To be written.

 kXR_mkdir

xrootd Protocol Version 2.9.9 Page: 49

3.9 kXR_locate Request

Purpose: Locate a file.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_locate kXR_unt16 0

 kXR_unt16 options kXR_int32 resplen

 kXR_char reserved[14] kXR_char info[resplen]

 kXR_int32 plen
 kXR_char path[plen]

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

options
 are the options to apply when path is opened. The options are an “or’d”

combination of the following values:
 kXR_nowait - provide information as soon as possible

 kXR_refresh - update cached information on the file’s location
 (see notes)
.
reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

plen is the binary length of the supplied path, path.

path is the path of the file to be located. Opaque information appended to the

path does not affect the request.

resplen
 is the byte length of the response that follows

info are zero or more node types, IPV6 hybrid addresses, and port numbers of

nodes that have the file. The port number is to be used to contact the node.

kXR_getfile

xrootd Protocol Version 2.9.9 Page: 50

Node Entry Response Format

xy[::aaa.bbb.ccc.ddd.eee]:ppppp

Where:

x is a single character that identifies the type of node whose IP address

follows. Valid characters are:
 M - Manager node where the file is online
 m - Manager node where the file is pending to be online.
 S - Server node where the file is online
 s - Server node where the file is pending to be online.

y is a single character that identifies the file access mode at the node whose

IP address follows. Valid characters are:
 r - Read access allowed
 w - Read and write access allowed.

aaa.bbb.ccc.ddd.eee
 is the IPv4 portion of the IPV6 node address, for IPV4 environments.

Otherwise, a true IPV6 address is returned.

ppppp is the port number to be used for contacting the node.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Option flags are the same as those defined for the kXR_open request.
3) The kXR_refresh voids the kXR_nowait option.
4) If the file resides in more than one location, each location is separated by a

space.
5) The kXR_nowait option provides a location as soon as one becomes

known. This means that not all locations are necessarily returned. If the
file does not exist, a wait is still imposed.

6) If available, use the inet_ntop() and inet_pton() function to convert
addresses to suitable format as these accepts traditional IPV4 address as
well as IPV6 addresses.

 kXR_dirlist

xrootd Protocol Version 2.9.9 Page: 51

7) Nodes identified as M or m, do not actually hold the file. These are
manager nodes that know other locations for the file. To obtain the real
file location, the client must contact each M(m) node and issue a
kXR_locate request. The processes is iterative, as the response from an
M(m) node may identified other M(m) nodes.

8) Clients should guard against circular references by setting an absolute
depth limit in the number of M(m) to M(m) references they will accept
before declaring an error. A limit of 4 covers a range of 16,777,216 possible
locations.

 kXR_mkdir

xrootd Protocol Version 2.9.9 Page: 53

3.10 kXR_login Request

Purpose: Initialize a server connection.

 Request Normal Response (server < 2.4.0 | client < 1.0)
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_login kXR_unt16 0

 kXR_int32 pid kXR_int32 slen

 kXR_char username[8] kXR_char sec[slen]

 kXR_char reserved[1]

 kXR_char zone[1] Normal Response (server >= 2.4.0 & client > 0.0)
 kXR_char capver[1] kXR_char streamid[2]
 kXR_char role[1] kXR_unt16 0

 kXR_int32 tlen kXR_int32 slen+16

 kXR_char token[tlen] kXR_char sessid[16]

 kXR_char sec[slen]

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

pid is the process number associated with this connection.

username
 is the unauthenticated name of the user to be associated with the

connection on which the login is sent.

capver
 is the client’s capabilities combined with the binary protocol version

number of the client. The capabilities reside in the top-most two bits while
the protocol version number is encoded in the lower 6 bits. Currently, for
capabilities two values are possible:

 0b00vvvvvv - client only supports synchronous responses
 0b10vvvvvv - (kXR_asyncap) client supports asynchronous responses

kXR_getfile

xrootd Protocol Version 2.9.9 Page: 54

zone is the client’s time zone expressed as hours east or went of UTC and
encoded as follows:

 0brrrxyyyy - r is a reserved bit and should be set to 0.
 - x is set to 1 if yyyy is hours east of UTC ; otherwise 0.

 - y is the absolute number of hours plus 1 of this time zone
 relative to UTC.

role is the role being assumed for this login. Valid roles are:
 kXR_useradmin 0x01 - login as an administrator
 kXR_useruser 0x00 - login as a regular user (the default)

tlen is the binary length of the supplied token, token. If no token is present, tlen

is zero.

token is the token supplied by the previous redirection response that has

initiated this login request.

slen is the binary length of the information, sec, that follows slen.

sessid is the opaque session identifier associated with this login. The sessid is

always present when the server protocol version if greater than or equal to
2.4.0 and the client protocol version if greater than 0.

sec is the null-terminated security information. The information should be

treated as opaque and is meant to be used as input to the security protocol
creation routine XrdSecGetProtocol().

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) If no security information is returned (i.e., slen is zero), the XRootd server
does not require that the client authenticate.

3) If security information is returned, then the client must create the security
context allowed by the security information, obtain credentials, and send
them using an kXR_auth request.

4) Authentication must occur prior to any operation that requires
authentication. See the table on page 10 for a list of requests that must be
authenticated.

5) Logging in as an administrator suppresses any redirection attempts and
limits the request set to kXR_auth and kXR_admin.

 kXR_dirlist

xrootd Protocol Version 2.9.9 Page: 55

6) A subsequent kXR_auth request may revert the login into a normal user
login should xrootd find that the authenticated user cannot assume the
role of administrator.

7) Logging in as a normal user prohibits the use of the kXR_admin request.
8) Sending a kXR_login request on a previously authenticated connection

destroys the authentication context; requiring that the connection be re-
authenticated.

9) The sessid is used in kXR_bind and kXR_endsess requests,
10) Opaque information must be treated as truly opaque. The client must not

inspect nor modify opaque information in any way.

 kXR_mkdir

xrootd Protocol Version 2.9.9 Page: 57

3.11 kXR_mkdir Request

Purpose: Create a directory.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_mkdir kXR_unt16 0

 kXR_char options kXR_int32 0
 kXR_char reserved[13]
 kXR_unt16 mode

 kXR_int32 plen
 kXR_char path[plen]

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

options
 are the options to apply when path is created. The options are an “or’d”

combination of the following values:
 kXR_mkpath - create directory path if it does not already exist

mode is the access mode to be set for path. The access mode is an “or’d”

combination of the following values:

Access Readable Writeable Searchable
Owner kXR_ur kXR_uw kXR_ux

Group kXR_gr kXR_gw kXR_gx

Other kXR_or not supported kXR_ox

plen is the binary length of the supplied path, path.

path is the path of the of the directory to be created.

kXR_getfile

xrootd Protocol Version 2.9.9 Page: 58

Notes
1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) When a directory path is created, as requested by the kXR_mkpath
option, the directory permission specified in mode are propagated along
the newly created path.

3) No umask applies to the specified mode.

kXR_mv

xrootd Protocol Version 2.9.9 Page: 59

3.12 kXR_mv Request

Purpose: Rename a directory or file.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_mv kXR_unt16 0

 kXR_char reserved[16] kXR_int32 0

 kXR_int32 plen
 kXR_char path[plen]

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

plen is the binary length of the supplied old and new paths, paths.

paths is the old name of the path (i.e., the path to be renamed) followed by a

space and then the name that the path is to have.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Renames across file systems are not supported.

 kXR_open

xrootd Protocol Version 2.9.9 Page: 61

3.13 kXR_open Request

Purpose: Open a file or a communications path.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_open kXR_unt16 0

 kXR_unt16 mode kXR_int32 resplen

 kXR_unt16 options kXR_char fhandle[4]

 kXR_char reserved[12] [kXR_int32 cpsize]

 kXR_int32 plen [kXR_char cptype[4]]
 kXR_char path[plen] [kXR_char info[resplen-12]]

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

mode is the advisory mode in which path is to be opened. The mode is an “or’d”

combination of the following values:

Access Readable Writeable Executable
Owner kXR_ur kXR_uw kXR_ux
Group kXR_gr kXR_gw kXR_gx

Other kXR_or not supported kXR_ox

options
 are the options to apply when path is opened. The options are an “or’d”

combination of the following values:
 kXR_async - open the file for asynchronous i/o (see notes)
 kXR_compress - open a file even when compressed (see notes)
 kXR_delete - open a new file, deleting any existing file
 kXR_force - ignore file usage rules

 kXR_mkpath - create directory path if it does not already exist
 kXR_new - open a new file only if it does not already exist
 kXR_nowait - open the file only if it does not cause a wait
 kXR_open_apnd - open only for appending
 kXR_open_read - open only for reading
 kXR_open_updt - open for reading and writing
 kXR_posc - enable Persist On Successful Close (POSC) processing

kXR_prepare

xrootd Protocol Version 2.9.9 Page: 62

 kXR_refresh - update cached information on the file’s location

 (see notes)
 kXR_replica - the file is being opened for replica creation
 kXR_retstat - return file status information in the response
 kXR_seqio - file will be read or written sequentially (see notes)

.
reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

plen is the binary length of the supplied path, path.

path is the path of the file to be opened. The path can be suffixed with

additional information necessary to properly process the request. See the
following section on opaque information for more information.

resplen
 is the byte length of the response that follows. At least four bytes will be

returned.

fhandle
 is the file handle for the associated file. The file handle should be treated

as opaque data. It must be used for subsequent kXR_close, kXK_read,
kXR_sync, and kXR_write requests.

cpsize is the compression page size. The cpsize field is returned when the

kXR_compress or kXR_retstat have been specified. Subsequent reads
must be equal to this value and read offsets must be an integral multiple
of this value. If cpsize is zero, the file is not compressed and subsequent
reads may use any offset and read length.

cptype is the compression algorithm used to compress the file. The cptype field is

returned when the kXR_compress or kXR_retstat have been specified. If
the file is not compressed, the first byte of the four byte field is a null byte
(\0). For compressed files, subsequent reads must use this algorithm to
decompress the data.

info is the same information that kXR_stat returns for the file. This information

is returned only if kXR_retstat is set and the server is at protocol version
2.4.0 or greater. The cpsize and cptype fields are always returned and are
only meaningful if kXR_compress has been specified. Otherwise, cpsize
and cptype are set to values indicating that the file is not compressed.

 kXR_dirlist

xrootd Protocol Version 2.9.9 Page: 63

Notes
1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Open fails if the path designates a directory.
3) No umask applies to the specified mode.
4) The kXR_async option tells the server to overlap file i/o with network

requests as much as possible for this file. For instance, read requests may
be done in parallel with other read requests sent on the same link. This
option is only useful if the client is able to issue multiple requests (i.e., is
not serializing the requests-response stream).

5) While the kXR_async option applies to write operations, as well. Server-
side asynchronous opportunities are far more limited. The client needs to
perform appropriate multiplexing of write requests with other requests to
gain improved parallelism.

6) The kXR_async option imposes additional overhead on the server and
should only be specified when the client can take advantage of request-
response parallelism.

7) The kXR_refresh option imposes additional overhead on the server
because it requires that the server obtain the most current information on
the file’s location before attempting to process the open request. This
option should only be used as part of the error recovery process outlined
in section “Client Recovery From File Location Failures”.

8) The kXR_refresh option is ignored by any server not functioning as a
primary redirecting server.

9) When a directory path is created, as requested by the kXR_mkpath
option, the directory permission of 0775 (i.e., rwxrwxr-x) are propagated
along the newly created path.

10) Only files may be opened using the kXR_open request code.
11) The kXR_retstat option is meant to eliminate an additional server request

for file status information for applications that always need such
information.

12) The kXR_seqio option is meant to be advisory. A server may choose to
optimize data layout or access based on this hint. Misusing the hint may
lead to degraded performance.

13) The kXR_posc option requests safe file persistence which persists the file
only when it has been explicitly closed.

kXR_prepare

xrootd Protocol Version 2.9.9 Page: 64

3.13.1 Passing Opaque Information

The kXR_Open request allows a client to pass opaque information to properly
steer the open. The information may or may not be acted upon, depending on the
server’s capabilities. Opaque information is passed by suffixing the path with a
question mark (?) and then coding the opaque information as a series of
ampersand prefixed (&) variable names immediately followed by an equal sign
(=) prefix value, as shown below:

path?&layer.directive=arg[,arg[,···]][&layer.directive=···]

Where:
layer

is the layer to which the directive is sent. Valid layer names are:
ofs the logical file system layer
oss the physical storage system layer.

directive

is the name of the specific directive
arg

are directive-specific arguments.

Notes
1) Unrecognized layer names or directive names are ignored.
2) Invalid values or arguments to a recognized directive normally result

in termination of the request.
3) Refer to the documentation for a specific server extensions to

determine the opaque information that can be specified.

Example
 &ooss.cgroup=index&oofs.snotify=120,msg,0,imserv,xyzzy

 kXR_ping

xrootd Protocol Version 2.9.9 Page: 65

3.14 kXR_ping Request

Purpose: Determine if the server is alive.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_ping kXR_unt16 0

 kXR_char reserved[16] kXR_int32 0

 kXR_int32 0

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

Notes
1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Use the kXR_ping request to see if the server is running.

 kXR_prepare

xrootd Protocol Version 2.9.9 Page: 67

3.15 kXR_prepare Request

Purpose: Prepare one or more files for access.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_prepare kXR_unt16 0

 kXR_char options kXR_int32 rlen

 kXR_char prty kXR_char resp[rlen]

 kXR_unt16 port

 kXR_char reserved[12]

 kXR_int32 plen

 kXR_char plist[plen]

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

options
 are the options to apply to each path. The notes explain how these options

can be used. The options are an “or’d” combination of the following:
 kXR_cancel - cancel a prepare request
 kXR_coloc - co-locate staged files, if at all possible
 kXR_fresh - refresh file access time even when location is known
 kXR_noerrs - do not send notification of preparation errors
 kXR_notify - send a message when the file has been processed
 kXR_stage - stage the file to disk if it is not online
 kXR_wmode - the file will be accessed for modification

prty is the binary priority the request is to have. Specify a value between 0 (the

lowest) and 3 (the highest), inclusive.

port is the binary udp port number in network byte order to which a message

is to be sent, as controlled by kXR_notify and kXR_noerrs. If port is
zero and kXR_notify is set, notifications are sent via asynchronous
messages via the connected server, if possible.

reserved
 is an area reserved for future use and must be initialized to null (i.e., ‘\0’).

kXR_protocol

xrootd Protocol Version 2.9.9 Page: 68

plen is the binary length of the supplied path list, plist.

plist is the list of new-line separated paths that are to be prepared for access. If

only one path is supplied, it need not be terminated with a new line
character (\n). If kXR_cancel is specified, then plist must be a prepare
locatorid.

rlen is the binary length of the response, resp, that follows rlen.

resp is the response to request.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) The kXR_prepare request attempts to make the indicated files available
for access. This may require that the files be brought in from a Mass
Storage device.

3) The kXR_prepare request always executes asynchronously. Therefore,
unless there are obvious errors in the request, a successful status code is
immediately returned.

4) The system makes no guarantees that the files will be made available for
access ahead of a future kXR_open request. Hence, the kXR_prepare
request is treated as merely a hint.

5) The kXR_prepare request should normally be directed to a load-balancing
server should one be present.

6) The when the prepare request has been accepted in the presence of the
kXR_stage option, the server returns a request locator (i.e., locatorid) as the
normal response. This locatorid should be treated as an opaque ASCII text
string. The locatorid can be used to cancel the request at some future time
and to pair up asynchronous messages with requests when kXR_notify
has been set.

7) kXR_coloc is only meaningful in the presence of kXR_stage when more
than one file has been specified.

8) Co-location of files is not guaranteed. When the kXR_coloc and
kXR_stage options are set, an attempt will be made to co-locate all
mentioned files in the request with the first file in the list of files.

9) Co-location may fail for many reasons, including but not limited to, files
already present at different locations, files present in multiple locations,
and insufficient space. The success if co-locations is implementation
defined.

 kXR_protocol

xrootd Protocol Version 2.9.9 Page: 69

3.16 kXR_protocol Request

Purpose: Obtain the protocol version number and type of server.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_protocol kXR_unt16 0

 kXR_int32 clientpv kXR_int32 8

 kXR_char reserved[12] kXR_int32 pval

 kXR_int32 0 kXR_int32 flags

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

clientpv
 the binary protocol version that the client is using. See the usage notes on

how to obtain the correct value. The clientpv field is recognized only in
protocol version 2.9.7 and above.

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

pval is the binary protocol version number the server is using.

flags is additional bit-encoded information about the server. The following flags

are returned when clientpv is zero (i.e. not specified) or the server’s
protocol version is 2.9.6 or lower:

 kXR_DataServer - This is a data server.
 KXR_LBalServer - This is a load-balancing server.

 The following flags are returned when clientpv is not zero (i.e. is specified)

and the server’s protocol version is 2.9.7 or above:
 kXR_isManager - Has manager role.
 kXR_isServer - Has server role.
 kXR_attrMeta - Has the meta attribute (e.g. meta manager).

 kXR_attrProxy - Has the proxy attribute (e.g. proxy server).
 kXR_attrSuper - Has the supervisor attribute.

kXR_protocol

xrootd Protocol Version 2.9.9 Page: 70

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) The client should not rely on the response data length being 8. In the
future, additional information may be returned.

3) The protocol version is defined by kXR_PROTOCOLVERSION in the
header file that defines protocol values and data structures.

4) When the client specifies its protocol version in clientpv, the server may
use that information to tailor responses to be compatible with the stated
version. Since any number of kXR_protocol requests can be issued, the
authoritative protocol version is considered to be the one in effect after the
kXR_login request succeeds. After that time, the client’s protocol version
is immutable until the next login.

5) For kXR_bind requests, the client’s protocol version is forced to be the
same as that the base login stream to which the bind request refers.

6) When testing the bits in flags in the protocol response when clientpv is
specified, the following order should be used:

a. kXR_isManager -> role manager
i. kXR_attrMeta -> role meta manager

ii. kXR_attrProxy -> role proxy manager

iii. kXR_attrSuper -> role supervisor

b. kXR_isServer -> role server

i. kXR_attrProxy -> role proxy server

c. If none of the above, treat as role manager.

7) The protocol specifies that a client must affiliate with the first manager or

the last meta-manager encountered. Client retry requests should be sent to

the affiliated [meta] manager established during the connection phase.

8) Protocol version 2.9.7 provides for a mechanism to determine whether a

connection target is a manager or a meta-manager. Clients using lower

versions of the protocol do not have that capability and consequently treat

managers and meta-managers identically. While this does not cause

functional problems, it markedly reduces efficiency when retrying

requests in the presence of multiple meta-managers that control different

sets of clusters.

 kXR_putfile

xrootd Protocol Version 2.9.9 Page: 71

3.17 kXR_putfile Request

Purpose: Store a complete file.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_putfile kXR_unt16 0

 kXR_int32 options kXR_int32 0

 kXR_char reserved[8]

 kXR_int32 buffsz
 kXR_int32 plen

 kXR_char path[plen]

 kXR_int32 dlen

 kXR_int64 offset

 kXR_char data[dlen-8]

 Å

 Å

 Å

 kXR_int32 0

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

options
 is a bit vector representing the options that are to apply to the file transfer.

The valid set of options are:
 kXR_delete - deleting any existing file
 kXR_force - ignore file usage rules
 kXR_md5file - Compute and transmit an MD5 checksum for the file.
 KXR_md5blok - Compute and transmit an MD5 checksum for each block.
 kXR_new - create a new file only if it does not already exist

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

buffsz is the maximum binary length that will be transmitted per file segment

(i.e., buffer size). If buffsz is zero, 65,544 (i.e., 64K+8) is used.

kXR_putfile

xrootd Protocol Version 2.9.9 Page: 72

plen is the binary length of the supplied path, path.

path is the path of the file to be stored.

dlen is the binary length of the data that follows with dlen never being greater

than buffsz.

offset is the binary offset of where data was located within the file. Negative

offsets indicate special non-file data is being transmitted. See the notes for
more information.

data is the data associated with the file.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Since a file may be much larger than the allowable buffer size, the file is
sent in buffsz segments until the whole file is sent. Therefore, a {dlen, offset,
data} triplet is returned for each entry. When no more data exist, a dlen of
zero is returned (i.e., there is no subsequent data).

3) When a 16-byte MD5 checksum is requested, it is transmitted either after
the complete file is transferred or after each block, as specified by the
options. An MD5 checksum will have a dlen of 24 and an offset of negative
one (i.e., -1).

4) An empty file is created when the eight-byte triplet {streamid, 0, 0} is
immediately sent.

5) An MD5 checksum must not be transmitted for an empty file.
6) This request type is not currently supported.

3.17.1 Multi-Stream File Storage

To be written.

 kXR_query

xrootd Protocol Version 2.9.9 Page: 73

3.18 kXR_query Request

Purpose: Obtain server information.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_query kXR_unt16 0

 kXR_unt16 reqcode kXR_int32 ilen

 kXR_unt16 reserved1[2] kXR_char info[ilen]

 kXR_char fhandle[4]

 kXR_char reserved2[8] Delayed Response3

 kXR_int32 alen kXR_char streamid[2]

 kXR_char args[alen] kXR_unt16 kXR_waitresp
 kXR_int32 4
 kXR_int32 seconds

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

fhandle
 is the file handle value supplied by the successful response to the

associated kXR_open request. Only kXR_Qvisa support fhandle.

reqcode
 is the binary code indicating the specific query being made. Valid codes

are:
 kXR_Qconfig Query server configuration

 kXR_Qckscan Query file checksum cancellation
 kXR_Qcksum Query file checksum
 kXR_Qopaque Query implementation-dependent information
 kXR_Qopaquf Query implementation-dependent information
 kXR_QPrep Query prepare status

3
 A delayed response appears in protocol version 2.5.0 or higher. Earlier protocol versions did not use the

delayed response mechanism.

kXR_query

xrootd Protocol Version 2.9.9 Page: 74

 kXR_Qspace Query server logical space statistics

 kXR_Qstats Query server statistics
 kXR_Qvisa Query file visa attributes
 kXR_Qxattr Query file extended attributes

alen is the binary length of the supplied arguments, args.

args is the arguments to the query, specific to the reqcode.

ilen is the binary length of the information, info, that follows ilen.

info is the requested information.

seconds
 is the binary identifier number of seconds by which a response should be

delivered using the unsolicited response mechanism.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Responses to kXR_Qspace and kXR_Qxattr requests are documented in
the Open File System (ofs) and Open Storage System (oss) configuration
reference. Responses to kXR_Qopaque and kXR_Qopaquf are
implementation dependent. This query type should not be used for
portable programs.

3) Unstructured data may be passed using the kXR_Qopaque. The

kXR_Qopaquf reqcode is meant for structured arguments (i.e., valid path
and opaque information).

4) The kXR_waitresp response is not an error response but merely indicates
that the response may take approximately seconds of time to deliver and
will be reported using the unsolicited response mechanism (i.e., kXR_attn
with kXR_asynresp). Refer to the description of each server response for
detailed handling information.

5) A delayed response appears in protocol version 2.5.0 or higher. Earlier
protocol versions did not use the delayed response mechanism.

 kXR_Qcksum

xrootd Protocol Version 2.9.9 Page: 75

3.18.1 KXR_query Checksum Cancellation Request

Purpose: Obtain server information.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_query kXR_unt16 0

 kXR_unt16 kXR_Qckscan kXR_int32 0

 kXR_char reserved[14]

 kXR_int32 plen

 kXR_char path[plen]

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).
U8

plen is the binary length of the supplied path, path.

path is the path of the file whose check sum is to be cancelled.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Only check sums requested by the current client may be cancelled.

 kXR_Qcksum

xrootd Protocol Version 2.9.9 Page: 77

3.18.2 KXR_query Checksum Request

Purpose: Obtain server information.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_query kXR_unt16 0

 kXR_unt16 kXR_Qcksum kXR_int32 ilen

 kXR_char reserved[14] kXR_char info[ilen]

 kXR_int32 plen

 kXR_char path[plen]

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

plen is the binary length of the supplied path, path.

path is the path of the file to be stored.

ilen is the binary length of the information, info, that follows ilen.

info is the requested information.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Each installation determines the type of checksum that will be returned.
The algorithmic name of the checksum precedes the checksum value.

kXR_Qcksum

xrootd Protocol Version 2.9.9 Page: 78

Returned Response

The general format for the kXR_Qcksum response is:

csname csvalue

Where:

csname
 is the algorithmic name of the checksum algorithm used. This name is

selected by the administrator.

csvalue
 is the checksum name as a hexadecimal ASCII text string. The format is

dependent on the algorithm used to compute the checksum

 kXR_Qconfig

xrootd Protocol Version 2.9.9 Page: 79

3.18.3 KXR_query Configuration Request

Purpose: Obtain server information.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_query kXR_unt16 0

 kXR_unt16 kXR_Qconfig kXR_int32 ilen

 kXR_char reserved[14] kXR_char info[ilen]

 kXR_int32 qlen

 kXR_char qry[qlen]

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

qlen is the binary length of the supplied query arguments, qry.

qry are the space-separated names of the variables to be returned. Current

variables that may be queried are:
 bind_max maximum number of sockets that may be bound to login

session.
 pio_max maximum number of requests that may be queued on a

bound socket before the session stream must wait.
 readv_ior_max maximum amount of data that may be requested in a

single kXR_readv request element.
 readv_iov_max maximum number of elements in a kXR_readv request

vector.
 tpc version number for third party copy protocol. If third

party copy protocol is not supported, “tpc” is returned.
Otherwise, an integer value is returned.

 wan_port the preferred port number to connect to over for wide-
area network access.

 wan_window socket buffer size (i.e., window) for the wan_port port.
 window socket buffer size (i.e., window) for the default port.

kXR_Qconfig

xrootd Protocol Version 2.9.9 Page: 80

ilen is the binary length of the information, info, that follows ilen.

info is the requested information.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Clients should avoid issuing configuration query requests to a redirector
as this may not reflect the actual limits imposed by a server. Instead,
configuration requests should be obtained for each server.

Returned Response

The general format for the kXR_Qconfig response consists of a list of new-line
delimited value in 1-to-1 correspondence to the list of supplied variable:

Cvalue\n[Cvalue\n[. . .\n]]

Where:

Cvalue
 is the corresponding value associated with the queried variable. If the

variable has no value then the name of the variable is returned as Cvalue.

 kXR_Qspace

xrootd Protocol Version 2.9.9 Page: 81

3.18.4 KXR_query Space Request

Purpose: Obtain server information.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_query kXR_unt16 0

 kXR_unt16 kXR_Qspace kXR_int32 ilen

 kXR_char reserved[14] kXR_char info[ilen]

 kXR_int32 slen

 kXR_char sname[slen]

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

slen is the binary length of the supplied path, sname.

sname is the logical name of the space whose statistics are to be returned.

ilen is the binary length of the information, info, that follows ilen.

info is the requested information.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Each installation determines the type of logical spaces that exist and the
values that can be returned for them.

6) The response to the kXR_Qspace request is documented in the Open File
System (ofs) and Open Storage System (oss) configuration reference.

3) If sname is empty, the name “public” is used.

kXR_read

xrootd Protocol Version 2.9.9 Page: 82

3.18.5 KXR_query Statistics Request

Purpose: Obtain server information.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_query kXR_unt16 0

 kXR_unt16 kXR_QStats kXR_int32 ilen

 kXR_char reserved[14] kXR_char info[ilen]

 kXR_int32 alen

 kXR_char args[alen]

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

alen is the binary length of the supplied arguments, args.

args is an optional list of letters, each indicating the statistical components to be

returned. Valid letters are:
 a - Return all statistics (default) p - Protocol statistics
 b - Buffer usage statistics s - Scheduling statistics
 d - Device polling statistics u - Usage statistics
 i - Server identification z – Synchronized statistics
 l - Connection statistics

ilen is the binary length of the information, info, that follows ilen.

info is the requested information.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

 kXR_Qstats

xrootd Protocol Version 2.9.9 Page: 83

2) Statistical information is returned as an XML text string. The XML schema
is outlined below.

3) By default, the server returns statistical information that is readily
available. The “z” option, informs the server that the information returned
must be the accurate in real-time. This requires that the server synchronize
activities before gathering information. While this is not this is not a
resource intensive activity, it is one that may take considerable amount of
elapsed time. The client using “z” option should be ready to wait a
significant amount of time for a response.

Returned Response

The general XML schema for the kXR_Qstats response is:

<statistics tod=òtimeò ver=òversionò>details</statistics>

details: <stats id=òsectò>details</stats>[details]

Where:

time is the Unix time() value of when the statistics were generated.

vers is the xrootd version identification string.

setc is the section name assigned to the statistical information. Currently, the

following section names should be expected to occur:
 id arg Information

 buff b - Buffer usage statistics.
 cms p - Cluster Management Services
 info i - Server identification.
 link l - Connection (i.e., link) statistics.
 ofs p - Open File System layer
 oss p - Open Storage System layer
 poll d - Device polling statistics.

 proc u - Process usage statistics.
 rootd p - Protocol statistics for rootd.
 sched s - Scheduling statistics.

 xrootd p - Protocol information for xrootd.

Notes

1) Each subsection is bracketed by <stats> and </stats> tags.

kXR_read

xrootd Protocol Version 2.9.9 Page: 84

2) Sections appear in a server-defined order. The sections, corresponding to
each requested letter code, are returned.

3) The detailed contents of each section beyond what is described here is
implementation dependent.

 kXR_Qvisa

xrootd Protocol Version 2.9.9 Page: 85

3.18.6 KXR_query Visa Request

Purpose: Obtain server information.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_query kXR_unt16 0

 kXR_unt16 kXR_Qvisa kXR_int32 ilen

 kXR_char reserved1[2] kXR_char info[ilen]

 kXR_char fhandle

 kXR_char reserved2[8]

 kXR_int32 0

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

fhandle
 is the file handle value supplied by the successful response to the

associated kXR_open request.

ilen is the binary length of the information, info, that follows ilen.

info is the requested information.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) The response to the kXR_Qvisa request is documented in the Bandwidth
Manager Configuration reference.

 kXR_Qxattr

xrootd Protocol Version 2.9.9 Page: 87

3.18.7 KXR_query Xattr Request

Purpose: Obtain server information.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_query kXR_unt16 0

 kXR_unt16 kXR_Qxattr kXR_int32 ilen

 kXR_char reserved[14] kXR_char info[ilen]

 kXR_int32 plen

 kXR_char path[plen]

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

plen is the binary length of the supplied path, path.

path is the path of the file whose extended attributes are to be returned.

ilen is the binary length of the information, info, that follows ilen.

info is the requested information.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) The response to the kXR_Qxattr request is documented in the Open File
System (ofs) and Open Storage System (oss) configuration reference.

 kXR_read

xrootd Protocol Version 2.9.9 Page: 89

3.19 kXR_read Request

Purpose: Read data from an open file.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_read kXR_unt16 status

 kXR_char fhandle[4] kXR_int32 dlen

 kXR_int64 offset kXR_char data[dlen]
 kXR_int32 rlen

 kXR_int32 alen

 struct readahead_list

 { kXR_char fhandle2[4];

 kXR_int32 rlen2;

 kXR_int64 roffset2;

 };

 struct read_args

 { kXR_char pathid;

 kXR_char reserved[7];

 readahead_list rvec[(alen-8)/16];

 };

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

status is the ending status of this request. Only the following two status codes

indicate a normal ending:
 kXR_ok - All of the data has been transmitted without error.
 kXR_oksofar - Partial data has been transmitted without error;

 additional data should be expected on this stream.

offset is the binary offset from which the data is to be read.

rlen is the binary maximum amount of data that is to be read.

kXR_read

xrootd Protocol Version 2.9.9 Page: 90

alen is the binary length of the arguments that follow the request header. These
arguments may include the pathid and read-ahead request list, struct

read_args. If no data is to be pre-read, alen must be set to less than or
equal to eight (typically zero).

pathid is the pathid returned by kXR_bind. The response data is sent to this path,

if possible.

fhandle2
 is the file handle value supplied by the successful response to the

associated kXR_open request that is to be used for the pre-read request.
Each fhandle2 is treated separately allowing pre-reads to occur from
multiple files.

rlen2 is the binary maximum amount of data that is to be pre-read. The rlen2

should correspond to the intended amount of data that will be read at
offset2 in the near future.

offset2 is the binary offset from which the data is to be pre-read. The offset2

should correspond to the intended offset of data that will be read in the
near future.

dlen is the binary length of the of the data, data, that was actually read.

data is the data that was read.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) If more data is requested than the file contains, the total of all dlen’s will be
less than rlen.

3) Reading past the end of file with a valid offset will return a dlen of 0.
4) The fhandle value should be treated as opaque data.
5) Since a read may request more data than the allowable internal buffer size,

the data is sent in fixed-sized segments until the request is satisfied. This
is accomplished using the kXR_oksofar status code. Each subsequent data
segment is transmitted using a {streamid, status, dlen, data} response. The
last segment is indicated by a kXR_ok, if no error occurred.

6) Any status code other than kXR_oksofar indicates the end of
transmission.

 kXR_read

xrootd Protocol Version 2.9.9 Page: 91

7) Sending requests using the same streamid when a kXR_oksofar status
code has been returned may produced unpredictable results. A client
must serialize all requests using the streamid in the presence of partial
results.

8) The kXR_read request allows you to also schedule the pre-reading of data
that you will ask for in the very near future. Pre-reading data may
substantially speed up the execution because data will be available in
memory when it is actually asked for. On the other hand, requesting data
that you will not need will simply cause a general slow-down of the
complete system.

9) The pre-read request is considered only a hint. The system may or may
not honor the pre-read request, depending on the current system load.

10) To schedule a pre-read without actually reading any data, issue a
kXR_read request with rlen and offset set to zero and readahead_list filled
out to reflect what data should be pre-read.

 kXR_readv

xrootd Protocol Version 2.9.9 Page: 93

3.20 kXR_readv Request

Purpose: Read data from one or more open files.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_readv kXR_unt16 status

 kXR_char reserved1[15] kXR_int32 dlen

 kXR_char pathid; kXR_char data[dlen]

 kXR_int32 alen

 struct read_list

 { kXR_char fhandle[4];

 kXR_int32 rlen;

 kXR_int64 offset;

 };

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

status is the ending status of this request. Only the following two status codes

indicate a normal ending:
 kXR_ok - All of the data has been transmitted without error.
 kXR_oksofar - Partial data has been transmitted without error;

 additional data should be expected on this stream.

alen is the binary length of the arguments that follow the request header. These

arguments may include the pathid and read request list, struct read_args.
The maximum allowed value for alen is 8200. This allows up to 512 read
segments.

pathid is the pathid returned by kXR_bind. The response data is sent to this path,

if possible.

kXR_readv

xrootd Protocol Version 2.9.9 Page: 94

fhandle
 is the file handle value supplied by the successful response to the

associated kXR_open request that is to be used for the read request. Each
fhandle is treated separately allowing reads to occur from multiple files.

rlen is the binary maximum amount of data that is to be read. Less data will be

read if an attempt is made to read past the end of the file.

offset is the binary offset from which the data is to be read..

dlen is the binary length of the of the response data, data.

data is the response data. The response data includes read_list headers

preceding the actual data that was read.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Each read_list element represents a read request. All of the read requests
are aggregated into one or more responses. Read data is always prefixed
by its corresponding read_list element. However, the rlen value in the
element indicates the actual amount of data that was read.

3) If an element requests more data than the file contains, the returned rlen
will be smaller than the rlen in the request element.

4) Reading past the end of file with a valid offset will return a request
element whose rlen is 0 with no data following.

5) The fhandle value should be treated as opaque data.
6) Since a read may request more data than the allowable internal buffer size,

the data is sent in fixed-sized segments until the request is satisfied. This
is accomplished using the kXR_oksofar status code. Each subsequent data
segment is transmitted using a {streamid, status, dlen, data} response. The
last segment is indicated by a kXR_ok, if no error occurred.

7) Any status code other than kXR_oksofar indicates the end of
transmission.

8) Sending requests using the same streamid when a kXR_oksofar status
code has been returned may produced unpredictable results. A client
must serialize all requests using the streamid in the presence of partial
results.

9) The server may return the read elements in any order.

 kXR_rm

xrootd Protocol Version 2.9.9 Page: 95

3.21 kXR_rm Request

Purpose: Remove a file.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_rm kXR_unt16 0

 kXR_char reserved[16] kXR_int32 0

 kXR_int32 plen
 kXR_char path[plen]

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

plen is the binary length of the supplied path, path.

path is the path of the of the file to be removed.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

kXR_rmdir

xrootd Protocol Version 2.9.9 Page: 96

3.22 kXR_rmdir Request

Purpose: Remove a directory.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_rmdir kXR_unt16 0

 kXR_char reserved[16] kXR_int32 0

 kXR_int32 plen
 kXR_char path[plen]

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

plen is the binary length of the supplied path, path.

path is the path of the of the directory to be removed.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) The directory must be empty (i.e., no entries other than “.” And “..”).

 kXR_set

xrootd Protocol Version 2.9.9 Page: 97

3.23 kXR_set Request

Purpose: Set server information.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_set kXR_unt16 0

 kXR_char reserved[16] kXR_int32 n

 kXR_int32 dlen kXR_char resp[n]
 kXR_char data[dlen]

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

dlen is the binary length of the supplied value, data.

data is the value to set.

resp is the response value to the specific set requested.

Notes
1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) Set processing takes a command-like string in the data field. The following
documents valid set arguments.

kXR_readv

xrootd Protocol Version 2.9.9 Page: 98

3.23.1 Valid kXR_Set Values

 appid apmsg

 monitor {off | on} [appid] | info [info]}

Where:

appid apmsg
 includes apmsg in the server’s log. This request is meant to be used to

identify the start and stop if certain application processes for rudimentary
monitoring purposes. Up to 80 characters will be recorded.

monitor
 control monitor settings with respect to the application.
 off - turns off monitoring for the application.
 appid - includes up to 12 characters of application text in the
 monitor record.
 on - turns on monitoring, if allowed by the configuration.

 appid - includes up to 12 characters of application text in the
 monitor record.
info - insert information into the monitoring record, if information

monitoring is active.
 info - is up to 1024 characters of information

Response
 is the unique four-character identification value that has been assigned to

the info value.

Notes

1) Monitoring is enabled using the xrootd.monitor configuration directive.
When monitoring is not enabled, the monitor set requests are ignored.

2) Use the returned identification value to tag future records in order to
correlate related information.

 kXR_stat

xrootd Protocol Version 2.9.9 Page: 99

3.24 kXR_stat Request

Purpose: Obtain status information for a path.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_stat kXR_unt16 0

 kXR_char opts kXR_int32 ilen

 kXR_char reserved[11] kXR_char info[ilen]

 kXR_char fhandle[4]
 kXR_int32 plen
 kXR_char path[plen]

 Default info: id size flags modtime\0

 kXR_vfs info: nrw frw urw nstg fstg ustg\0

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

opts
 are stat processing options:
 kXR_vfs - return virtual file system information.

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

plen is the binary length of the supplied path, path. If plen is zero then fhandle

must hold the file handle value supplied by the successful response to the
associated kXR_open request. The fhandle argument is ignored when a

path is present.

path is the path whose status information is to be returned.

ilen is the binary length of the information, info, that follows ilen.

kXR_stat

xrootd Protocol Version 2.9.9 Page: 100

Default Response

info is the information about the requested path.

id is the OS-dependent identifier assigned to this entry. Uniqueness is not

guaranteed. The id is numeric and convertible to a 64-bit value.

size is the decimal size of the data associated with the path whose information

is being returned. The size may represent a number up to 264-1 (i.e., a long
long).

flags identifies the entry’s attributes as a decimal encoded 32-bit string. The

entry should be assumed to be a regular file unless one or more of the
following bits are set.

 kXR_xset - Either an executable file or a searchable directory.
 kXR_isDir - This is a directory.
 kXR_other - This neither a file nor a directory.

 kXR_offline - For files, the file is not online (i.e., on disk).
 kXR_poscpend - The file was created with kXR_posc and has not yet
 been successfully closed.
 kXR_readable - Read access allowed.
 kXR_writable - Write access allowed.

modtime
 is the last modification time in Unix time units (i.e., seconds since 00:00:00

UTC, January 1, 1970).

Response for kXR_vfs

info the location information about the requested path.

nrw the number of nodes that can provide read/write space.

frw the size, in megabytes, of the largest contiguous area of r/w free space.

urw percent utilization of the partition represented by frw.

nstg the number of nodes that can provide staging space.

fstg the size, in megabytes, of the largest contiguous area of staging free space.

ustg percent utilization of the partition represented by fstg.

 kXR_stat

xrootd Protocol Version 2.9.9 Page: 101

Notes
1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) The returned string is compatible to the format returned by the root
method Tsystem::GetPathInfo().

3) kXR_stat requests, without the kXR_vfs option, directed to a redirector
(i.e., load balancer) referring to a non-file object may result in a non-
deterministic response. That is, the response may indicate that the object
does not exist when, in fact, it does exist but is not a file. Future versions
may resolve the differences between redirectors and file servers.

4) kXR_stat - kXR_vfs requests need not specify an existing filesystem
object. The specified path is used as a path prefix in order to filter out
servers and partitions that could not be used to hold objects whose path
starts with the specified path prefix.

5) kXR_stat - kXR_vfs requests directed to a redirector return the space
values based on current conditions and should be treated as
approximations. When the request is directed to an actual server, the
server’s actual space information is returned.

 kXR_statx

xrootd Protocol Version 2.9.9 Page: 103

3.25 kXR_statx Request

Purpose: Obtain type information for one or more paths.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_statx kXR_unt16 0

 kXR_char reserved[16] kXR_int32 ilen

 kXR_int32 plen kXR_char info[ilen]
 kXR_char paths[plen]

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

plen is the binary length of the supplied path list, paths.

paths is the new-line separated path list whose availability information is to be

returned. If a single path is supplied, it need not end with a new line
character (\n).

ilen is the binary length of the information, info, that follows ilen.

info is the information about the requested path consisting of a single binary

character flag for each path in paths.

flags identifies the entry’s attributes as a binary character. The entry should be

assumed to be an immediately available regular file unless one or more of
the following bits are set.

 kXR_xset - Either an executable file or a searchable directory.

 kXR_isDir - This is a directory.
 kXR_other - This neither a file nor a directory, or does not exist.
 kXR_offline - For files, the file is not online (i.e., on disk).

kXR_statx

xrootd Protocol Version 2.9.9 Page: 104

Notes
1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) kXR_statx requests directed to a redirector (i.e., load balancer) referring to
a non-file object may result in a non-deterministic response. That is, the
response may indicate that the object does not exist when, in fact, it does
exist but is not a file. Future versions may resolve the differences between
redirectors and file servers.

 kXR_sync

xrootd Protocol Version 2.9.9 Page: 105

3.26 kXR_sync Request

Purpose: Commit all pending writes to an open file.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_sync kXR_unt16 0

 kXR_char fhandle[4] kXR_int32 0

 kXR_char reserved[12]

 kXR_int32 0

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

fhandle
 is the file handle value supplied by the successful response to the

associated kXR_open request.

Notes
1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) The fhandle value should be treated as opaque data.

 kXR_sync

xrootd Protocol Version 2.9.9 Page: 107

3.27 kXR_truncate Request

Purpose: Truncate a file to a particular size.

 Request (Opened File) Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_truncate kXR_unt16 0

 kXR_char fhandle[4] kXR_int32 0

 kXR_int64 size;

 kXR_char reserved[4]

 kXR_int32 0

 Request (Closed File)
 kXR_char streamid[2]

 kXR_unt16 kXR_truncate

 kXR_char reserved1[4]

 kXR_int64 size;

 kXR_char reserved2[4]

 kXR_int32 plen

 kXR_char path[plen]

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

fhandle
 is the file handle value supplied by the successful response to the

associated kXR_open request. The fhandle argument is ignored when a
path is present.

size is the binary size that the file is to have.

plen is the binary length of the supplied path, path.

path is the path of the of the file to be truncated.

kXR_statx

xrootd Protocol Version 2.9.9 Page: 108

Notes
1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) The fhandle value should be treated as opaque data.

 kXR_sync

xrootd Protocol Version 2.9.9 Page: 109

3.28 kXR_unbind Request

Purpose: Unbind a socket from a pre-existing session.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_unbind kXR_unt16 0

 kXR_char pathid kXR_int32 0

 kXR_char sessid[15]

 kXR_int32 0

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

pathid is the socket identifier associated with the bound socket. This is the value

returned by the kXR_bind request.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) The sessid value should be treated as opaque data.

kXR_write

xrootd Protocol Version 2.9.9 Page: 110

3.29 kXR_write Request

Purpose: Write data to an open file.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_write kXR_unt16 0

 kXR_char fhandle[4] kXR_int32 0

 kXR_int64 offset
 kXR_char pathid
 kXR_char reserved[3]
 kXR_int32 dlen

 kXR_char data[dlen]

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

fhandle
 is the file handle value supplied by the successful response to the

associated kXR_open request.

offset is the binary offset to which the data is to be written.

pathid is the pathid returned by kXR_bind. The actual data is read from this path.

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

dlen is the binary length of the of the data, data, to be written.

data is the data to be written.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) The fhandle value should be treated as opaque data.

kXR_write

xrootd Protocol Version 2.9.9 Page: 111

3.30 kXR_verifyw Request

Purpose: Write data to an open file with checksum validation.

 Request Normal Response
 kXR_char streamid[2] kXR_char streamid[2]

 kXR_unt16 kXR_verifyw kXR_unt16 0

 kXR_char fhandle[4] kXR_int32 0

 kXR_int64 offset
 kXR_char pathid
 kXR_char vertype

 kXR_char reserved[2]
 kXR_int32 dlen

 kXR_char data[dlen]

Where:

streamid
 is the binary identifier that is associated with this request stream. This

identifier will be echoed along with any response to the request.

fhandle
 is the file handle value supplied by the successful response to the

associated kXR_open request.

offset is the binary offset to which the data is to be written.

pathid is the pathid returned by kXR_bind. The actual data is read from this path.

vertype
 identifies the checksum algorithm used; implying how many bytes of

checksum data precede the data to be written; as follows:

Option Bytes Algorithm

kXR_nocrc 0 no crc computed

kXR_crc32 4 32-bit crc using the xroot supplied algorithm

reserved
 is an area reserved for future use and must be initialized to null characters

(i.e., ‘\0’).

dlen is the binary length of the of the data, data, to be written.

kXR_statx

xrootd Protocol Version 2.9.9 Page: 112

data is the data to be written.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields must be initialized to binary zero.

2) The fhandle value should be treated as opaque data.
3) The crc data must immediately precede the data to be written.
4) The length of the crc data plus the length of the data to be written must

equal the dlen value.
5) Using an unsupported vertype causes the verifyw request to fail

kXR_write

xrootd Protocol Version 2.9.9 Page: 113

4 The Security Framework

The xrootd protocol provides for a generic security framework in which virtually
any security protocol can be used. The xrootd protocol neither specifies nor
mandates that any particular security protocol be used. However, should a
security protocol be implemented, the xrootd protocol specifies how the security
protocol’s data elements are to be framed and how client-server interactions
during the security protocol’s execution are to be handled.

The first two protocol steps that a client does after connecting to a server are:

1. sends the 20-byte handshake, followed by a
2. kXR_login request.

At this point, the server may require that a security protocol be used to
authenticate the client. It is the server that initiates the authentication exchange.
The client can never force an authentication to occur. The server mandates that
authentication occur by responding to the kXR_login request with security
information. This is an implicit action on the server’s behalf.

Authentication is not required when the data length portion of the response to
the kXR_login is exactly 16 bytes4. When the data length is greater than 16 bytes,
the data portion of the response contains what is called a security token. This is
essentially a list of the security protocols that the server can use to establish the
client’s identity along with possible configuration information that is specific to
each protocol.

The format of the security token is:

 ptoken: &P=protid[,protparms][ptoken]

Security Token Format

Where:

protid is a 1- to 7-character protocol name. This name is typically used to locate a

shared library that implements the security protocol.

protparms

are optional protocol specific configuration parameters that must be
supplied to the protocol’s initialization routine when it is instantiated. The

4
 Protocol versions less than 2.4 used a different signifier. Refer to the kXR_login request code description

for detailed information on deprecated protocol versions.

kXR_statx

xrootd Protocol Version 2.9.9 Page: 114

comma is required is protparms are present. The comma is optional
otherwise. The protparms may not contain an ampersand (&).

In the reference implementation, the protid is specified by the sec.protocol
configuration directive and protparms can come from the sec.protocol and the
sec.protparm directives. The plug-in code that handles the protocol is then
assumed to reside in libXrdSecprotid.so which is dynamically loaded by
libXrdSec.so which itself is loaded by the client when a security token has been
returned in response to a login. See the “Scalla Security Configuration Reference”
for more information.

Generally, the security token is handled by some class that sequences the
authentication process. Only that class should be aware of the token’s format.
This class is responsible for loading one of the listed protocols and initiating the
authentication sequence as defined by the security protocol. For consistency
among implementations, it is recommended that protocols be considered from
left to right and that protocols be successfully tried until one is found to succeed.

For instance, in the krb5 security protocol, protparms defines the service principal
whose ticket must be obtained and sent back to the server to prove the client’s
identity. The security token would appear as

&P=krb5,srvname

with srvname being the service principal name. If the service ticket must be
forwardable, then the token would be sent as

&P=krb5,srvname,fwd

Each protocol specifies its own protparms requirements. Refer to the “Scalla
Security Configuration Reference” for more information for each available
protocol.

The normal sequence in almost any security protocol is that one side generates
data sends it to the other side that either accepts or rejects the data and may
respond with other data which the receiver may or may not be required to
respond to. This is a generalization of multiple exchanges. The xrootd protocol
handles such exchanges without interpretation; as follows:

1 After the client-side security manager chooses a protocol and successfully

initializes it with the protparms; that protocol must return some data that will
be sent to the server. The data must be sent to the server as a kXR_auth
request. This data is known as credentials.

 kXR_sync

xrootd Protocol Version 2.9.9 Page: 115

kXR_statx

xrootd Protocol Version 2.9.9 Page: 116

2 The first eight characters of the initial credentials should contain the null
terminated protocol identifier of the protocol that generated the credentials.
Hence, the actual credential data starts eight bytes into the credential data
packet in the first credential packet sent to the server. Subsequent packet
layout is defined by the security protocol.

3 When the server receives the initial kXR_auth request; it should attempt to use
a protocol handler that matches the protocol identifier contained in the
credentials (i.e., in the first eight bytes). When the protocol handler is created,
the credentials should be passed to its authentication method. If a match
cannot be found or initialization fails, a kXR_error response must be sent. The
connection should remain opened so that the client may try an alternate
protocol without performing a new login. For subsequent kXR_auth requests,
the same protocol used in the successful handling of the initial kXR_auth
request must be used.

4 After the credentials are processed by the authentication method; three
possibilities exist:
a) The data is accepted and no more exchanges are needed. In this case, the

response to the kXR_auth request must be a kXR_ok. The client is then
considered to be fully authenticated.

b) The data is not accepted and authentication failed. In this case, a kXR_error
response must be sent with the connection remaining open.

c) Finally, additional information is needed to complete the authentication.
The authentication method supplies the data that data must be sent to the
client who is expected to respond with a kXR_auth request. The data
provided by the authentication method must be used as the body of a
kXR_authmore response.

5 The client’s action for each of the three possible responses is:
a) Authentication exchanges are stopped when kXR_ok is received. The client

is considered to be fully authenticated and may issue other requests.
b) Authentication exchanges are stopped when a kXR_error is received. The

client may declare a fatal error at this point.
c) An authentication exchange should occur when kXR_authmore is

received. The protocol’s get credentials method should be called with the
data in the kXR_authmore response. The method may then supply new
data that must be sent to the server in a new kXR_auth request or indicate
failure. In this processing continues with step 3.

 kXR_sync

xrootd Protocol Version 2.9.9 Page: 117

4.1 Framework for Transport Layer Protocols

The xrootd security framework and the protocol elements that support it are
geared to application layer security. Indeed, implementations are highly
discouraged to expose the underlying transport to application code. This is
necessary in order to allow multiple transports to be used in a transparent way.

Unfortunately, certain commonly available security implementations are either
transport based (e.g., ssl) or rely on intimate knowledge of the transport out of
expediency.

Currently, the xrootd protocol elements neither accommodate nor define direct
transport layer interactions between the client and server parts of a security
protocol; though nothing prevents implementations of doing so out of band or
perhaps hijacking the xrootd connection for a limited amount of time. However,
the reference implementation makes it impossible to do either.

That said, the reference implementation does provide a virtualized transport via
a wrapper class called XrdSecTLayer. This class can be used to wrap transport
layer security protocols implementations and carry out what appear to be
transport layer interactions. The wrapper class virtualizes the interactions by
appropriately framing all exchanges within the protocol defined in this
document.

kXR_write

xrootd Protocol Version 2.9.9 Page: 119

5 Local Socket Administrative Protocol

Xrootd implementations may provide a local TCP socket for handling
administrative functions. This section details the protocol used on this local
socket. Refer to the xrootd configuration manual on information how to
determine the location of the local socket.

5.1 Initiating an Administrative Session

To successfully initiate an administrative session, you must

1. Connect to an xrootd via its locally defined administrative socket.
2. Issue the login request.

Therefore, a successful login request must precede any other request.

5.2 General Request Format

All requests are transmitted on the local socket consist of new-line (\n) separated
ASCII text records. Each request is structured as follows:

 reqid command [target] [args] \n

Request Format

Where:

reqid is the text identifier token that is associated with this request. This token is

echoed along with any response to the request. The reqid may not be
longer than 15 characters.

command

is the command to be executed. The following sections document valid
commands.

target is the pattern that identifies the connections to which command applies.

Only commands that deal with connections have a target requirement. See
the following section on the format of target.

args are command specific arguments.

kXR_statx

xrootd Protocol Version 2.9.9 Page: 120

5.2.1 Request Target Format

[user][*][@[pfx][*][sfx]]

Where:

user is the name of the user to which the request applies. If user ends with an

asterisk, the request applies to all users that start with user. A single
asterisk indicates all users.

pfx is the host name prefix to which the request applies. If nothing follows pfx,

then the request applies only to host names matching pfx. If an asterisk
follows pfx then the request applies to all host names that start with pfx.

sfx is the host name suffix to which the request applies. If nothing precedes

sfx, then the request applies only to host names matching sfx. If an asterisk
precedes sfx then the request applies to all host names that end with sfx.

Notes

1) The target specification allows you to route requests to particular
connections. Each connection is identified in a uniform way, described in
the following section.

2) In order to route a request to a single connection, the complete connection
name must be specified.

3) The target is mandatory even if the request applies to all connections. In
this case, specify a single asterisk for target.

5.2.1.1 Connection name format

user.pid:fd@host

Where:
user is the Unix username of the user.

pid is the userôs process number that issued the request.

fd is the serverôs file descriptor number associated with the connection to user:pid at

host.

host is the host name, or IP address, where the userôs request originated.

 kXR_sync

xrootd Protocol Version 2.9.9 Page: 121

5.3 General Response Format

All responses transmitted on the local socket consist of new-line (\n) separated
ASCII text XML records. Each response is structured as follows:

 <resp id=òreqidò><rc>code</rc>[xmltoks]</resp>\n

Response Format

Where:

reqid is the text identifier token of the request that is associated with this

response.

code is the numeric code indicating success or failure of the request. Zero (“0”)

always indicates that the request succeeded. A non-zero value indicates
that the request failed.

xmltoks
 are additional XML response elements that are specific to the request.

5.3.1 Error Response Format

All error responses are structured as follows:

 <resp id=òreqidò><rc>code</rc><msg>msg</msg><resp>\n

Error Response Format

Where:

reqid is the text identifier token of the request that is associated with this

response.

code is a non-zero numeric code indicating failure.

msg is a message explaining the failure.

kXR_statx

xrootd Protocol Version 2.9.9 Page: 122

5.4 Abort request for kXR_asyncab Client Action

Purpose: Send a kXR_attn/kXR_asyncab unsolicited response.

Request Format

 reqid abort target [msg]\n

Normal Response Format

 <resp id=òreqidò><rc>0</rc><num>num</num></resp>\n

Where:

reqid is the request-response association text identifier token.

target is the pattern that identifies the connections to be aborted.

num is the number of kXR_attn/kXR_asyncab unsolicited responses that

were sent.

msg is optional message text to be sent to applicable clients.

Notes

1) When a client receives an unsolicited kXR_attn/kXR_asyncab

response, it prints msg to the console or log, if present, and then
immediately terminates execution. Therefore, all server connections are
terminated.

2) The server does not close the associated socket until after the client closes
the connection.

3) Use other requests to terminate connections to the immediate (i.e., single)
server.

 kXR_sync

xrootd Protocol Version 2.9.9 Page: 123

5.5 Close request

Purpose: Close client connections.

Request Format

 reqid close target\n

Normal Response Format

 <resp id=òreqidò><rc>0</rc><num>num</num></resp>\n

Where:

reqid is the request-response association text identifier token.

target is the pattern that identifies the connections to be closed.

num is the number of connections that were closed.

Notes

1) This request is local to the server and does not generate any unsolicited
responses.

2) When the connection is closed, the client attempts to perform standard
recovery actions.

kXR_statx

xrootd Protocol Version 2.9.9 Page: 124

5.6 cj request

Purpose: Cancel background job.

Request Format

 reqid cj job key\n

Normal Response Format

 <resp id=òreqidò><rc>0</rc><num>num</num></resp>\n

Where:

reqid is the request-response association text identifier token.

job is the type of background job to be cancelled.

key is the key that identifies the particular background job to be cancelled.

num is the number of connections that were closed.

Notes

1) This request is local to the server and does not generate any unsolicited
responses.

2) When a background job is cancelled, the client attempts to perform
standard recovery actions.

3) Use the lsj request to list cancelable jobs.

 kXR_sync

xrootd Protocol Version 2.9.9 Page: 125

5.7 Cont request for kXR_asyncgo Client Action

Purpose: Send a kXR_attn/kXR_asyncgo unsolicited response.

Request Format

 reqid cont target\n

Normal Response Format

 <resp id=òreqidò><rc>0</rc><num>num</num></resp>\n

Where:

reqid is the request-response association text identifier token.

target is the pattern that identifies the connections to be resumed.

num is the number of kXR_attn/kXR_asyncgo unsolicited responses that

were sent.

Notes

1) When a client receives an unsolicited kXR_attn/kXR_asyncgo

response, and it is waiting due to a previous kXR_attn/kXR_asyncwt
unsolicited response from the server; it must terminate the wait and
resume normal communications with the server.

2) If the client is not waiting due to a previous kXR_attn/kXR_asyncwt
unsolicited response, the client ignores the kXR_attn/kXR_asyncgo
unsolicited response.

3) Use the pause request to send a kXR_attn/kXR_asyncwt unsolicited
response.

kXR_statx

xrootd Protocol Version 2.9.9 Page: 126

5.8 Disc request for kXR_asyncdi Client Action

Purpose: Send a kXR_attn/kXR_asyncdi unsolicited response.

Request Format

 reqid disc target wsec msec\n

Normal Response Format

 <resp id=òreqidò><rc>0</rc><num>num</num></resp>\n

Where:

reqid is the request-response association text identifier token.

target is the pattern that identifies the connections to be disconnected.

wsec is the number of seconds the client should wait before attempting to

reconnect to the server.

msec is the maximum number of seconds the client should wait before

declaring reconnect failure.

num is the number of kXR_attn/kXR_asyncdi unsolicited responses that

were sent.

Notes

1) When a client receives an unsolicited kXR_attn/kXR_asyncdi

response, it immediately disconnects from the server (i.e., closes the
connection). It then waits wsec seconds and attempts to reconnect to the
server. If the reconnection fails, it waits another wsec seconds and tries
again. After msec seconds, it declares failure and executes the standard
reconnection failure recovery steps.

 kXR_sync

xrootd Protocol Version 2.9.9 Page: 127

5.9 Login request (mandatory)

Purpose: Create an administrative session.

Request Format

 reqid login adminid\n

Normal Response Format

 <resp id=òreqidò><rc>0</rc><v>vers</v></resp>\n

Where:

reqid is the request-response association text identifier token.

adminid

is a string that uniquely identifies the administrative client instance.
Typically, this would be of the form: “<username>.<pid>”. Where,
 <username> is the unix name of the process uid
 <pid> if the process number as a ASCII string

vers is the protocol version number being used.

Notes

1) The login request must be the first request sent to the server.
2) This request is local to the server and does not generate any unsolicited

responses.

kXR_statx

xrootd Protocol Version 2.9.9 Page: 128

5.10 Lsc request

Purpose: List client connections.

Request Format

 reqid lsc target\n

Normal Response Format

 <resp id=òreqidò><rc>0</rc><conn>[conn]</conn></resp>\n

Where:

reqid is the request-response association text identifier token.

target is the pattern that identifies the connections to be listed.

conn is a space separated list of connections. If no connections exist that match

target, the list is empty. Otherwise, each connection has the form of:

user.pid:fd@host

Where:
user is the Unix username of the user.
pid is the userôs process number.

fd is the serverôs file descriptor number associated with the connection to

user:pid at host.
host is the host name, or IP address, of the user’s machine.

kXR_write

xrootd Protocol Version 2.9.9 Page: 129

5.11 Lsd request

Purpose: List detailed client connections.

Request Format

 reqid lsd target\n

Normal Response Format

 <resp id=òreqidò><rc>0</rc>

 <c r=òroleò t=òctimeò v=òversò m=ò[mon]ò>cname

 <io u=òinuseò><nf>nfiles</nf>

 <p>pbytes<n>pcnt</n></p>

 <i>ibytes<n>wcnt</n></i>

 <o>obytes<n>rcnt</n></o>

 <s>stalls</s><t>tardies</t>

 </io>

 [<auth p=òprotò>

 <n>[name]</n><h>[host]></h>

 <o>[org]</o><r>[role]</r>

 </auth>]

 </c>

 <resp>\n

Where:

reqid is the request-response association text identifier token.

target is the pattern that identifies the connections to be listed.

role is the role assumed by the client connect. The ‘a’ is used to designate an

administrative role and ‘u’ as a regular user role.

ctime is the server-local Unix time that existed when the connection was

established (i.e., connect time).

vers is the client’s version number that was specified during login. Refer to the

description of the login request for information on how to interpret the
version number.

kXR_statx

xrootd Protocol Version 2.9.9 Page: 130

mon the monitoring status of this connection. The letter ‘f’ is used to indicate
file-level monitoring and ‘i’ as I/O-level monitoring. If no monitoring is in
effect, the string is empty.

cname is the name of the connection as “user.pid:fd@host” (see lsc).

inuse the number of references to this connection. This is a close approximation
of the number of concurrent requests that are active.

nfiles number of files the connection has open.

pbytes the number of bytes pre-read from files, by client request.

pcnt the number of pre-read requests.

ibytes the number of bytes read from the connection. This is an approximation of

the number of bytes written to all files.

wcnt the number of write requests.

obytes the number of bytes written to the connection. This is an approximation

of the number of bytes read from all files.

rcnt the number of read requests.

stalls number of times the connection stopped transmitting data in the middle

of a request causing the request to stall.

tardies number of times the connection stopped transmitting data at a request

boundary casing the request to be rescheduled.

prot the protocol name used for authentication.

name the client’s distinguished name as reported by prot. If no name is present,

the tag data is null.

host the client’s host’s name as reported by prot. If no host name is present, the

tag data is null.

org the client’s organization as reported by prot. If no organization is present,

the tag data is null.

 kXR_sync

xrootd Protocol Version 2.7.0 Page: 131

role the client’s role name as reported by prot. If no role name is present, the
tag data is null.

kXR_write

xrootd Protocol Version 2.9.9 Page: 133

5.12 Lsj request

Purpose: List jobs.

Request Format

 reqid lsj { * | chksum }\n

Normal Response Format

 <resp id=òreqidò><rc>0</rc>

 [<job id=òjtypeò> jkey<s>stat</s>

 <conn>[conn [. . .]]</conn>

 </job>] [...]]

 </resp>\n

Where:

reqid is the request-response association text identifier token.

* lists all background jobs.

chksum
 lists only check sum jobs.

jtype is the job type. Possible types are:
 chksum - job requested via kXR_query - kXR_Qcksum

jkey the key unique identifying the job. Applicable keys are:
 chksum - the logical filename of the file being check summed

stat is the job status. Possible values are:
 a - actively executing

 d - completed

 w - waiting for resources

 u - unknown status

conn is a space separated list of client connections that initiated the job. If no

connections exist for the job, the list is empty. See the lsc request for the
definition o f conn.

kXR_statx

xrootd Protocol Version 2.9.9 Page: 134

5.13 Msg request for kXR_asyncms Client Action

Purpose: Send a kXR_attn/kXR_asyncdms unsolicited response.

Request Format

 reqid msg target [msg]\n

Normal Response Format

 <resp id=òreqidò><rc>0</rc><num>num</num></resp>\n

Where:

reqid is the request-response association text identifier token.

target is the pattern that identifies the connections to be sent messages.

msg is optional message text to be sent to applicable clients.

num is the number of kXR_attn/kXR_asyncms unsolicited responses that

were sent.

Notes

1) When a client receives an unsolicited kXR_attn/kXR_asyncms

response, it prints the message to the console and continues normal
execution. If the message is null, the client ignores the
kXR_attn/kXR_asyncms unsolicited response.

 kXR_sync

xrootd Protocol Version 2.9.7 Page: 135

5.14 Pause request for kXR_asyncwt Client Action

Purpose: Send a kXR_attn/kXR_asyncwt unsolicited response.

Request Format

 reqid pause target wsec\n

Normal Response Format

 <resp id=òreqidò><rc>0</rc><num>num</num></resp>\n

Where:

reqid is the request-response association text identifier token.

target is the pattern that identifies the connections to be disconnected.

wsec is the number of seconds the client should wait before resuming

communications with the server.

num is the number of kXR_attn/kXR_asyncwt unsolicited responses that

were sent.

Notes

2) When a client receives an unsolicited kXR_attn/kXR_asyncwt

response, it immediately pauses communications with the server for wsec
seconds.

3) The client maintains the connection to the server during the pause
interval. Use the disc request to tell the client to close the connection
during the pause interval.

4) It is up to the client whether or not it pauses all communications or only
communications with the immediate server.

5) Use the cont request to cancel the effects of a pause request.

kXR_statx

xrootd Protocol Version 2.9.9 Page: 136

5.15 Redirect request for kXR_asyncrd Client Action

Purpose: Send a kXR_attn/kXR_asyncdrd unsolicited response.

Request Format

 reqid redirect target host[?token]:port[?token]\n

Normal Response Format

 <resp id=òreqidò><rc>0</rc><num>num</num></resp>\n

Where:

reqid is the request-response association text identifier token.

target is the pattern that identifies the connections to be sent redirections.

host is the DNS name or IP address of the target host.

token is the optional token that the client must transmit to the target host upon

connection. The token may be specified after host or after port.

port is the port number that the client must use when connecting to host.

num is the number of kXR_attn/kXR_asyncms unsolicited responses that

were sent.

Notes

1) When a client receives an unsolicited kXR_attn/kXR_asyncrd

response, it switches all logical streams with the current host to the
indicated host.

2) Switching logical streams is a complicated action. Refer to the description
of the kXR_attn/kXR_asyncrd unsolicited response for details on the

client’s actions.

 Change History

xrootd Protocol Version 2.9.9 Page: 137

6 Document Change History

1 June 2005

 Add kXR_bind and kXR_endsess request codes.

 Explain how a sessid is returned in response to kXR_login.

 Add kXR_open_apnd and kXR_retstat options to kXR_open.

28 July 2005

 Document the administrative interface protocol.

16 Aug 2005

 Document the lsd administrative command.

25 Jan 2006

 Document the cj administrative command.

 Document the lsj administrative command.

 Add kXR_Cancelled subtype error code.

 Add kXR_Qckscan subtype request to kXR_query.

25 Jan 2006

 Document kXR_readv.

 Complete documentation of kXR_bind.

 Redefine the pre-read structure in kXR_read to include a pathid
argument.

 Add a pathid to kXR_write.

5 Dec 2006

 Document kXR_Qconfig subcode of kXR_query.

 Document kXR_unbind.

 Explain ramification of not using kXR_unbind in the kXR_bind
description.

 Clarify kXR_open request with respect kXR_compress and
kXR_retstat.

25 Jan 2007

 Document pio_max variable for kXR_Qconfig sub-request of
kXR_query.

26 Feb 2007

 Change kXR_prepare to reflect that the priority is really a char.

1 Aug 2007

 Document the kXR_verifyw request.

 Document the kXR_replica, kXR_ulterior, and kXR_nowait
options.

Change History

xrootd Protocol Version 2.9.9 Page: 138

26 Sep 2007

 Document the kXR_locate request.

15 Nov 2007

 Document the kXR_nowait option of the kXR_locate request.

 Document the kXR_vfs option of the kXR_stat request.

13 Mar 2008

 Document the kXR_qspace and kXR_qxattr options of the

kXR_query request.

7 Apr 2008

 Document the kXR_truncate request.

12 May 2008

 Correct kXR_Query documentation w.r.t. the subcode location.

 Document the kXR_QVisa variant or kXR_Query.

20 Aug 2008

 Correct kXR_coloc and kXR_fresh options of the kXR_prepare

request.

 Document the kXR_Qopaque and kXR_Qopaquf variants of
kXR_Query.

26 Jan 2009

 Correct description of lsj admin command xml output.

8 Apr 2009

 Document kXR_seqio option of the kXR_open request.

 Add fhandle to the kXR_stat request to allow getting stat
information based on a currently open file.

6 May 2009

 Describe the security framework as related to the protocol.

2 Jun 2009

 Describe the kXR_posc open flag and the kXR_poscpend stat
response flag.

14 Jul 2009

 Alter description of kXR_query + kXR_QStats to indicate that

other than the basic framing of the information, the actual XML

package is implementation dependent.

 Change History

xrootd Protocol Version 2.9.7 Page: 139

9 Dec 2010

 Document missing field, credtype, in the kXR_auth request. This

field was always there but somehow escaped documentation.

Leaving it unset does not change the protocol but also does not

allow the client to switch protocols mid-stream.

14 Jul 2011

 Expand description of information that kXR_protocol may return

when the client optionally specifies its own protocol version

number (new extension).

28 Mar 2012

 Correct diagrams and expand on descriptive text for kXR_query,

kXR_read, kXR_readv, and kXR_set.

 Add missing pathid argument to kXR_readv request.

 Expand on the text describing responses to kXR_redirect.

 Add tpc to the list of configuration variables that may be queried.

21 Jun 2012

 Better explain possible error recovery actions.

 Add optional elements that should have been described:

o zone field in kXR_login

o port field in kXR_prepare

o pathid field in kXR_readv

