

GSI Virtual Micro Workshop December 14-15, 2020

Andrew Hanushevsky, SLAC

Introduction

This roadmap contains

- The context in which it was created
- The starting point and
- What drives this map
- **#** It has no specific destination
 - The world changes too quickly
 - But you'll get the feel of where it can go and why

Sit back and enjoy the journey!

The XRootD Project

- A structured Open Source community supported project to provide a framework for clustering distributed storage services available via github, EPEL, & OSG
 - The project also supplies the fundamentals
 - A packaged storage service that meets many needs
 - But one that is also highly customizable

What the project does

- **#** Accepts contributions from all disciplines
 - Core team supplies architectural consistency, code vetting, integration, packaging, documentation inclusion, testing (via CI), maintenance and support *management*
 - Successfully doing so for 20+ years
 - We rely on the community to assist in testing,
 CI enhancements, support, and bug fixes
 - The project co-ordinates these activities
 - Keep in mind, we are not a software company!

The **XRootD** Project Software

- Framework runs on common platforms
 Most popular Linux distributions & macOS
 Includes full featured python bindings
 Focus on diverse community needs
 Widely used in HEP and Astro communities
 Significant use in many other disciplines
 Via our community partner designed systems
 - Where framework is embedded in a larger system
 - Our unofficial logo is "XRootD inside!"
 - E.G. CTA, DPM, EOS, PRP, Qserv, StashCache

December 14-15, 2020

Current storage support

- Any kind of mounted Posix-like file systemUnmounted file systems
 - Ceph (2nd party, originally developed by Sebastien Ponce CERN EP-LBC)
 HDFS (3rd party, originally developed by Brian Bockelman Morgridge)
- **#** Tape
 - CTA (3rd party, plug-ins developed by Michael Davis CERN IT-ST-TAB)
 - HPSS (1st party, integration developed by SLAC)
 - Client access via XRootD prepare protocol
 SRM support is not envisioned

Current storage access modes

Posix-like file system access via xroot[s] and http[s] protocols FUSE mounted file system **#** LAN clustered & distributed WAN clusters Using cmsd clustering services Independent of protocol used for access Best LAN example is UCSD Xcache Best WAN example is CMS AAA

Current storage caching modes

Posix-like caching file system via FRM (File Residency Manager) cache Read/write whole file access Supports all transfer protocols to/from cache

- Meache (memory caching only)
 - Read/write block level file access
 - Supports xroot[s] and http[s] to/from cache

Xcache

- Read/only block level file access
 - Supports xroot[s] and http[s] to populate cache

Current QoS support

#WLCG QoS support in wait and see mode

- We have not received *any* community requests for extensive QoS functionality (except for GSI)
- Framework already provides QoS templates
 - Similar to SRM space tokens but more flexible
 - Tied to a logical path or selected via CGI element
 - This seems good enough for communities we serve

QoS templates

A file may be created in a *cgroup* E.g. xroot://host//path?oss.cgroup=cgname **#** Each *cgroup* is tied to a particular QOS • I.E. the *cgroup* is effectively a QOS template **#** Currently, QOS is determined by hardware • E.g. HD, SSD, etc though can be extended Via external site-specific actions based on *cgroup* These need to be provided & implemented by the site

QoS cgroup specification

A *cgroup* is defined using **oss.space**

- oss.space cgroup mountpoint
- Logical file paths may be assigned a cgroup
 - oss.space cgroup {assign | default} lfnpfx [lfnpfx [...]]
 - Logical paths and *cgroups* are independent
 - Files in a directory can be in different *cgroups*
- A file may be reassigned to a different *cgroup*
 - Admin function via the frmadmin reloc command
 - https://xrootd.slac.stanford.edu/doc/dev50/frm_config.htm#_Toc43844791
- For *cgroup* implementation see
 - https://xrootd.slac.stanford.edu/doc/dev51/ofs_config.htm#_Toc53410343

Typical QoS cgroup usage

Currently used in very limited domains
In ATLAS as SRM space tokens
DATASPACE, GROUPSPACE, SCRATCHSPACE
In Xcache for physical data separation
A *cgroup* for actual data files (usually HD)
A *cgroup* for metadata files (may be SSD)

Where we are today

± 5.0.3 with numerous requested features**XRootD**

TLS with performance enhancements, JSON monitoring streams, credential forwarding, user file attributes, hardware CRC32C, plug-in stacking, K8s deployment options, enhanced tape support, universal multi-VO VOMS plug-in, and many more

http[s]

 Full TPC, proxy cert handling, SciTokens, multi-VO support, and several more

Highlight: TLS core

TLS core configured using directives:
xrd.tls, xrd.tlsca and xrd.tlsciphers
These can apply to https and xroots
For backward compatibility can still use http.xxx

- *xxx*: cadir, cafile, cert, cipherfilter, and key
 - Directive mode controlled via directive
 - http.httpsmode {<u>auto</u> | disable | manual}

For details see

https://xrootd.slac.stanford.edu/doc/dev51/xrd_config.htm#_Toc49272850

Highlight: TLS https & xroots

https adds one new TLS directive http.tlsreuse off | on For backward compatibility at non-X509 sites

xroots adds two new TLS directives

xrootd.tls [capable] req

- *req*: [-]all | [-]data | [-]login | <u>none</u> | off | [-]session | [-]tpc | *req*
 - This is for optimization and backward compatibility
 - See https://xrootd.slac.stanford.edu/doc/dev51/xrd_config.htm#_tls

For details see

https://xrootd.slac.stanford.edu/doc/dev51/xrd_config.htm#_Toc49272850

December 14-15, 2020

Highlight: Automatic crl refresh

The crls are automatically refreshed

- Server side function
 - No need to restart server

xrd.tlsca noverify | {certdir | certfile} path [options]

options: [crlcheck {all | external | last}]
 [log {failure | off}] [[no]proxies]
 [refresh rint[h|m|s]] [verdepth vdn]

See https://xrootd.slac.stanford.edu/doc/dev51/xrd_config.htm#_Toc49272858

Highlight: JSON Monitoring

New G-Stream monitoring added For use in low to medium report rates • E.g. **Xcache** and TCP monitoring Specifically geared for plug-ins Data should be in JSON Though that is determined by the plug-in Easily ingestible by elastic search, etc No need for specialized collectors

Highlight: Credential forwarding

- The sss authentication protocol enhancedCan forward credentials of any other protocol
 - E.g. x509 -> sss -> x509 (recreated)
 - Used for server to server proxy authentication
 - Client x509 authenticates to server *A*
 - Server a requests action in behalf of client at *B*
 - Server A authenticates with server B using sss
 - Server *B* executes using client's original credentials
 - For details see
 - https://xrootd.slac.stanford.edu/doc/dev50/sec_config.htm#_Toc56021439

Highlight: User file attributes

Directive added to control user settings ofs.xattr [maxnsz nsz] [maxvsz vsz] [uset {on | off}] **#** Underlying file system must support xattr Some require mount option or config setting • E.g. ext*n* and lustre **#** xrdcp is able to copy extended attributes --xattr option similar to --preserve in cp **#** For details see

https://xrootd.slac.stanford.edu/doc/dev51/ofs_config.htm#_Toc53410333

Highlight: Universal VOMS

VOMS plug-in enhanced

- Supports multiple VO's
 - Authorization can take into account user's VO

See https://xrootd.slac.stanford.edu/doc/dev50/sec_config.htm#_Toc56021456

Same plug-in for https and xroot[s] protocols

- Simplifies deployment and configuration
 - Requires install of libvomsapi.so library for use

Highlight: Stackable plug-ins

Most plug-ins can now be stacked

- Addition of ++ option on directives
 - ofs: authlib, ctllib, osslib, preplib, and xattrlib
 - sec: entitylib
 - xrd: tcpmonlib
 - xrootd: fslib
- Simplifies enhancing existing plug-ins
 - No need to rewrite just wrap it!

Highlight: Tape support

New plug-in directive for tape support ofs.preplib [++ | [+noauth]] path [parms] **#** Plug-in to handle xroot prepare request Used to prime redirectors Used to facilitate access to offline files ■ E.g. "bring online" **#** For details see

https://xrootd.slac.stanford.edu/doc/dev51/ofs_config.htm#_Toc53410327

Highlight: Caching exports

Seamless support of cacheable paths
all.export *path* ... [no]cache

 Automatically supplies all the required boilerplate needed to export Xcache managed paths to a redirector

Also applies to FRM caches

Highlight: Kubernetes support

Support to ease k8s deployments
New cms directive for virtual networking
cms.vnid {=id | <path | @libpath [parms]}
Establishes a network namespace to track servers
Normally DNS name or IP address would be used

■ See https://xrootd.slac.stanford.edu/doc/dev50/cms_config.htm#_Toc53611101

Enhanced xrd directive for k8s DNS

- xrd.network ... [[no]dyndns]
 - Accommodates the volatile nature of k8s DNS
 - See https://xrootd.slac.stanford.edu/doc/dev51/xrd_config.htm#_Toc49272864

Highlight: SciTokens

SciTokens plug-in available Token based authorization Requires use of a recognized token issuer Infrastructure for issuing tokens is still in flux Requires TLS support (i.e. token encryption) Available for https and xroots Doing seamless integration with xtootd Now plug-in is a 3rd party addon

Highlight: Extended https x509

https protocol has full x509 cert support

- Recognizes non-proxy certificates
 - This is the standard
- Recognizes proxy certificates (new)
 - Along with VOMS extension

Highlight: HTTP TPC

The http plug-in now supports TPC
Third party copy push and pull modes
Based on special headers (non-standard)
Uses libcurl to implement transfer agent
Relies on Macaroon support (included)
Server to server TPC authorization
No plan to support macaroons for xroot

Highlight: Command options

- **#** Two command line options added
 - [-a | -A] *path*
 - Set admin path via command line
 - [-w | -W] *path*
- Set homepath (cwd) path via command line
 Better support for systemd setups

Highlight: New commands

xrdpinls

List all recognized plug-ins

- Also provides required version information
 - Lists where a version tag is required, minimum version allowed, and associated directive
 - Optional >= 5.0 bwm.policy
 - Required >= 5.0 cms.perf
 - Required >= 5.0 cms.vnid
 - Optional >= 5.0 gsi-authzfun

What are the possible plug-ins?

There are 27 plug-in points

- 25 for the server
- 2 for the client

Most plug-ins are not exclusive Either they run in parallel or are stackable E.G. Protocol plug-ins run in parallel Plug-ins allow system customization Most are supplied in the XRootD core

0 SLACE

Plug-ins I

@logging bwm.policy cms.perf cms.vnid gsi-authzfun gsi-gmapfun gsi-vomsfun http.exthandler http.secxtractor ofs.authlib ofs.ckslib ofs.cmslib ofs.ctllib ofs.osslib ofs.preplib

Log message handler (server – cli option) Network bandwidth management **Performance monitor for cmsd (not script based)** Virtual network identifier generator for cms Specialized gsi authz function Specialized gsi gridmap function **Specialized gsi VOMS function HTTP** authentication post processing **HTTPS security information extraction Authorization plug-in Checksum plug-in Cluster management service client plug-in** Specialized file system control plug-in Storage system plug-in Prepare request plug-in

Plug-ins II

ofs.xattrlib oss.namelib oss.statlib pfc.decisionlib pss.cachelib pss.ccmlib sec.protocol xrd.protocol xrdcl.monitor xrdcl.plugin xrootd.fslib xrootd.seclib Extended attribute handler plug-in Name mapping plug-in Functional stat() plug-in Cache purging decision plug-in Cache implementation plug-in Cache context management plug-in Authentication protocol plug-in Communications protocol plug-in Client-side action monitor plug-in Client-side API implementation plug-in File system plug-in Security manager plug-in

Why so many plug-ins?

Some people ask why so few It's a matter of perspective and needs **# XRootD** architecture is highly modularized Allows for specific functional replacement Approach supports a myriad of authentication & authorization schemes, storage systems, clustering, and protocols among many other variations ■ This has allowed for long-term (i.e. 20+ years) evolution

For simplicity every plug-in has a default!

Where do we go from here?

Obvious next step is 5.1.0 Available in RPM form within days **#** Recommend to deploy 5.1.0 5.0.3 useful for testing However, it still contains a number of bugs ■ All corrected in 5.1.0 **#** Plus 5.1.0 contains more features! # Let's look at the roadmap

XRootD roadmap drivers

Experimental needs

- We also try to anticipate future needs
 - Different perspective outside the trenches
 - Especially when considering a diverse community
- Balance between competing desires
 Stability, performance and features
 Roadmap tilts toward the former for start of run
 Commitment to backward compatibility
 Can still mix circa 2000 clients and servers

Planned release schedule

■ 5.1.x 4Q20 (almost if not there) **■** 5.2.x 1-2Q21 **■** 5.3.x 3-4Q21

Feature addition schedule is fluid

 While we have plans experimental needs take precedence and may shuffle the schedule
 So, on to the highlights!

New Integrity Features in 5.1.0

Data in motion integrity

- CRC32C checksum for each 4K xmit unit
 - Dynamic substitution of checksum equivalent (i.e. TLS)
 - Real-time error correction using CRC32C
 - Only blocks in error are retransmitted (not for TLS)
 - Potential to substantially reduce network usage
 - Consider a 10GB file transfer with a 1 bit error
- First deployment will be in Xcache
 Subsequent rollout for xrdcp in 5.2.0

New Integrity Features 5.2.0

Data at rest integrity

- CRC32C checksum for each 4K disk block
- Real-time error detection
- **#** First usage will be in **Xcache**
 - Where only blocks in error will be re-fetched
- **#** However, this is a universal plug-in
 - Any storage system may use it (e.g. ext4, xfs, etc)
 Kudos to David Smith (CERN IT-SC-RD) who developed it

Using Xcache integrity features

pss.cschk opts

• opts: [[no]cache] [[no]net] [off] [[no]tls] [uvkeep { n[d|h|m|s] | lru }]

Integrity feature is on by default

- Substituting TLS when CRC is unavailable
 - Can switch this off with **notls**

Xcache integrity confidence

Storage system tracks CRC confidenceVerified

Server sent CRC or TLS was used

Unverified

CRC locally generated to detect media errors

None

• No CRC is available

Unverified blocks may be re-fetched

See https://xrootd.slac.stanford.edu/doc/dev51/pss_config.htm#_Toc50581514

New Integrity Features III

R 5.2.0 or 5.3.0

Data in motion integrity for writes

- CRC32C checksum for each 4K transmission unit
- Real-time error correction using CRC32C
 - Only blocks in error are retransmitted
 - Potential to substantially reduce network usage
- Write integrity is far more difficult than reads
 - Different set of edge cases most of which are problematic
- First deployment will be xrdcp

New ACID* Features (5.3.0)

File checkpoints

- Allows safe recoverable in-place updates
 - Server-side updates for Zip, Zarr, HDF5, etc files
 - Especially needed by other communities
- Completes XRootD native Zip file support
 - Extraction, listing, and now appends
- Driven by increasing use of Zip archives
 E.G. Log files in ATLAS

*Atomicity, Consistency, Isolation, and Durability

New HPC oriented features I

Fast data paths

- Ability to selectively use faster data interfaces
 - Extends current multi-stream support to multi-path
 - This is peculiar to but common in HPC systems
 - Control interface is slow but data interface is fast
- During logon client told of faster interfaces
 - Allows subsequent use for data transfer
 - Site can restrict fast interfaces to data only

New HPC oriented features II

RDMA for data transport

- Common in HPCs but is spreading
 - Driven by adoption of InfiniBand networks
 - LCLS-II at SLAC will use an internal InfiniBand network
 - Already have implicit RDMA via DCA feature
 - Direct Cache Access using Lustre based Xcache
 - Being used by GSI and NERSC

Enhanced Parallel XRootD

XRootD runs on each worker node There could be hundreds of these **#** Data flow needs to minimize network use Data source to running application **#**Needs real-time data flow scheduling Partly addressed but needs improvements Driven by large scale sites (e.g. U Wisconsin)

Enhanced Write Support (backend)

Distributed write recovery

- For systems that support it (e.g. EOS)
 - Eliminates full file retransmission upon error
 - Writes can proceed using another data server
- Part of XRootD file copy framework
 Automatically extends to gfal and xrdcp

Redirect minimization

Ability to always use primary head node

- Targeted toward consensus driven services
 - EOS is one such service
- Several head nodes but only one is the primary
 - New one chosen after a failure
- Client told redirect target is the primary
 - Subsequent requests only go to primary head node

Performance Improvements

xrdcp

- Simplify buffer management
- Use kernel space buffers
- Approximately 3-4x reduction in CPU usage
- Up to a 40% increase in transfer speed
 - Depending on target device

Universal Third Party Copy (TPC)

Ability to copy from/to using any protocol To/from local file system from/to elsewhere To/from elsewhere from/to elsewhere **#** Simplifies current TPC implementation Leverages the kXR_gpfile protocol element Compatible with any authentication scheme **I** Currently we support **XRootD** (pull mode) and **http**[**s**] (push and pull modes)

Plug-In Roadmap

Previous slides were core enhancements Either server or client based features, but... **#** Large part of roadmap centers on plug-ins Most have been developed elsewhere **#** These support AAI and backends **#** Let's take a test drive.... Stops in no particular order

SciToken plug-in (AAI)

Based on existing OSG plug-in

- Add security enhancements for XRootD use
 - Already available via <a href="https://www.https://wwww.https://wwwwwwww.https://www.https://www.https://www.ht
 - Being used by several sites
- Will become part of the XRootD core

XcacheH plug-in (other communities)

Accessing **Xcache** origins using **http**[**s**] Broadens data access reach Oriented toward multi-discipline sites Can be used as a Squid replacement Better performance and scalability Based on the plug-in by Radu Popescu Formerly at CERN now at Proton Tech AG Further developed by Wei Yang - SLAC Prototype being tested by ESNET & ESCAPE

Erasure coding plug-in (backend)

Client side plug-in to support EC writesBased on Intel ISAL

Hardware accelerated encoding

- Leverages XRootD pgWrite capability
 - Data in motion integrity with recoverability

Driven by ALICE requirements

Direct writes from the DAQ system to EOS
 Developed by Michal Simon (CERN IT-ST-PDS)

Unix Multi-User plug-in (other communities)

Allow file ownership based on uid-gid Access is based on Unix permission bits XRootD no longer owns the file A.K.A. uid-gid file tracking **#** Builds on the OSG multi-user plug-in **#** Popular at small sites as an NFS alternative Especially as a drop-in replacement

Enhanced SSI* plug-in (other communities)

Detachable tasks

Results collected from alternate locations

Task grouping

Dynamically consolidate sharded requests

Eases task management scaling

Driven by LSST qserv requirements

Typically run 200,000 parallel query tasksCoordinated by one or more master nodes

*Scalable Service Interface – an **XRootD** specialization plug-in

GSI Virtual Micro Workshop

December 14-15, 2020

Other developments

Improved Ceph plug-in
Addition of more features

Vector reads/writes

Packet marking

Labeling purpose of data in network packets
IPv6 only

XRootD will be used as a demonstrator

Conclusion

This is a diverse roadmap

- Features needed by one or more experiments
 - Not always in the HEP community
 - 73% of github tickets are enhancement requests
 - For features missing in other open source systems
- **#** As we approach HL-LHC
 - Feature additions will diminish
 - Performance and stability enhancements will increase

A Word Of Thanks

We are grateful for our core partners

We are also grateful for our community & funding partners and their support

Plus way too many other logos to fit (I should work on that)!

And of course, the front-line people that make it all actually work!

