
XRootD

Presentation at NSDF
February 7, 2022

Andrew Hanushevsky, SLAC

http://xrootd.org

February 7, 2022 2 NSDF Presentation

Brief history of the last ~20 years

2001 – BaBar decides to use root framework vs Objectivity

2002 Collaboration with INFN, Padova & SLAC created
Design & develop a network-based HP data access system

In the days of limited network b/w and high expense

2003 – First deployment of XRootD system at SLAC

2013 – Wide deployment across most of HEP

Protocol also re-implemented (Java) in dCache

2022 – XRootD is now a popular internal framework
Supports http, https, and xroots as well as xroot protocol

Third party software projects use it; leading to the moniker
“XRootD Inside!”

February 7, 2022 3 NSDF Presentation

Todays’s XRootD Project

A structured Open Source community
supported project to provide a framework
for clustering distributed storage services
available via github, EPEL, & OSG

 The project also supplies the fundamentals
 A packaged storage service that meets many needs

 But one that is also highly customizable

February 7, 2022 4 NSDF Presentation

What Is XRootD?

4

A system for scalable cluster data access

Not a file system & not just for file systems

If you can write a plug-in you can cluster it
 E.G. Used by LSST Qserv for clustered mySQL

Hang tight for the next 62 slides!

xrootd cmsd

Data Access Data Clustering

Clustering Using B64 Trees

5

Private Cluster Public Cluster

Private Cloud

xrootd

cmsd

xrootd

cmsd

xrootd

cmsd

641 = 64

xrootd

cmsd

xrootd

cmsd

xrootd

cmsd

xrootd

cmsd

642 = 4096

xrootd

cmsd

xrootd

cmsd

xrootd

cmsd

xrootd

cmsd

643 = 262144

xrootd

cmsd

xrootd

cmsd

xrootd

cmsd

xrootd

cmsd

644 = 16777216

Manager**

(Root Node)

Data Server
(Leaf Nodes)

Supervisors
(Interior Nodes)

How does a client get to a leaf?

xrootd

cmsd

xrootd

cmsd

cmsd

xrootd

Note: We will be supporting B128 Trees
Same capacity with half the supervisors

** Managers are also called redirectors but in practice any node is able to redirect

February 7, 2022 6 NSDF Presentation

WYSIWYG Scalable Access

redirect
open()
redirect
open()

xrootd

cmsd

xrootd

cmsd

xrootd

cmsd

641 = 64

xrootd

cmsd

xrootd

cmsd

xrootd

cmsd

xrootd

cmsd

642 = 4096

Client

open()

cmsd

xrootd

Request routing is very different from traditional data management models
This implements a structured network of request routers (i.e. redirectors)

Capable of automatically recovering from adverse conditions
Much like internet routing it essentially implements an NDN

open()

Exponentially Parallel Query
For Logical Endpoint Name

Routing Paths Cached
At Each Router Node

Request routed
to an alternate
node exporting

same logical name

Manager
Redirectors

Supervisor
Redirectors

Resource
Providers

Nodes
arranged

in a B64 tree
resource

providers
are leaf
nodes

Task: route a
client request from
top of the tree to

a resource provider

February 7, 2022 7 NSDF Presentation

Applied Clustering

XRootD clustering has many uses
 Creating a uniform name space

 Even though the name space is distributed

 Load balancing & scaling
 In situations where all servers are the “same”

 Serving data from distributed file systems (e.g. Lustre)

 Proxy servers (inherently identical)

 Caching servers (inherently fungible, e.g.Xcache)

 Reliability & recoverability
 When mirror copies exist across sites

February 7, 2022 8 NSDF Presentation

Deploying Clusters

Things to keep in mind
 Every cmsd has a companion xrootd

 Both should be on the same h/w box

 64 (soon 128) servers per cmsd
 If more than 64 servers use supervisor nodes

 #Sup = upper(log64(#servers + upper(log64(#servers)))

 Add one or two extras for enhanced reliability

 Manager & Supervisor nodes on separate h/w
 Using same node reduces reliability

February 7, 2022 9 NSDF Presentation

LAN vs WAN Clusters

LAN based clusters are reliable

 You should not have any problems

WAN based clusters are problematic

 You may have little control over remote sites

 What we have learned
 Only accept reliable and well connected sites

 Relegate problematic sites to secondary selection

• Only used if you can’t find a primary resource

 Otherwise, you will be definitely disappointed

February 7, 2022 10 NSDF Presentation

WAN Secondary Selection

xrootd xrootd

cmsd

Primary Cluster

Good sites cmsd

Secondary Cluster

So-So sites

Client

host1 host2

Manager nodes (a.k.a redirector)

xrootd.redirect host2 ? /

Not found try host2

Open /experiment/file1

To avoid political
hard feelings we

designate this as a
transitional federation
(taking a cue from EU)

February 7, 2022 11 NSDF Presentation

Deploying Manager Nodes I

Many sites use at least two

 Can be load balanced or simply a backup

 Load balanced managers now preferred

 Allows for much larger name spaces

 all.manager all ….
 https://xrootd.slac.stanford.edu/doc/dev54/cms_config.htm#_Toc53611061

 Also read all vs. any options (default is any)
 https://xrootd.slac.stanford.edu/doc/dev53/cms_config.htm#_Toc53611062

https://xrootd.slac.stanford.edu/doc/dev54/cms_config.htm
https://xrootd.slac.stanford.edu/doc/dev54/cms_config.htm
https://xrootd.slac.stanford.edu/doc/dev54/cms_config.htm
https://xrootd.slac.stanford.edu/doc/dev53/cms_config.htm
https://xrootd.slac.stanford.edu/doc/dev53/cms_config.htm

February 7, 2022 12 NSDF Presentation

Deploying Manager Nodes II

Don’t bother with DNS load balancing

 It really doesn’t work all that well

 Plus the XRootD client ignores it so it’s useless

 Using HA devices adds far more complexity

 Not worth the effort as cmsd does s/w HA anyway

February 7, 2022 13 NSDF Presentation

Default Load Balancing Servers

By default manager selects servers
 Uses a augmented round robin algorithm

 Within the set of servers that have the file o/w

 Within set of servers that have enough space

 Tuning knobs: cms.space and cms.sched linger

• Defines what enough means
• https://xrootd.slac.stanford.edu/doc/dev53/cms_config.htm#_Toc53611078

• https://xrootd.slac.stanford.edu/doc/dev53/cms_config.htm#_Toc53611076

This works reasonably well
 For non-stressed systems

https://xrootd.slac.stanford.edu/doc/dev53/cms_config.htm
https://xrootd.slac.stanford.edu/doc/dev53/cms_config.htm
https://xrootd.slac.stanford.edu/doc/dev53/cms_config.htm
https://xrootd.slac.stanford.edu/doc/dev53/cms_config.htm

February 7, 2022 14 NSDF Presentation

Load based Balancing Servers

Can enable load-based selection
 Must supply a load reporter (script or plug-in)

 See cms.perf directive
 https://xrootd.slac.stanford.edu/doc/dev53/cms_config.htm#_Toc53611073

 We already have two basic scripts in utils directory

• Bash: cms_monPerf and Perl: XrdOlbMonPerf

 Load is computed using a config formula
 Percentage of each of cpu, io, memory, paging, runq

 That yields a value 0 to 100.

 See cms.sched directive
 https://xrootd.slac.stanford.edu/doc/dev53/cms_config.htm#_Toc53611076

https://xrootd.slac.stanford.edu/doc/dev53/cms_config.htm
https://xrootd.slac.stanford.edu/doc/dev53/cms_config.htm
https://xrootd.slac.stanford.edu/doc/dev53/cms_config.htm
https://xrootd.slac.stanford.edu/doc/dev53/cms_config.htm

February 7, 2022 15 NSDF Presentation

Load based server selection I

Manager selects least loaded server

 Within set of servers that have the file

 Definition of “least” controlled by fuzzing
 See cms.sched fuzz

 Within set of servers that have enough space

 Tuning knob: cms.space

 Defines what enough means

 cms.sched linger is not applied

February 7, 2022 16 NSDF Presentation

Load based server selection II

This works well in all situations

 Load periodically reported

 Default is every 10 minutes

 Configurable via cms.ping directive
 https://xrootd.slac.stanford.edu/doc/dev53/cms_config.htm#_Toc53611094

 Load is also asynchronously reported

 If load delta of previous > cms.sched fuzz

 The default fuzz is 20%

 Requires script/plug-in supply data more often

 I.e. more often than periodic reporting interval

https://xrootd.slac.stanford.edu/doc/dev53/cms_config.htm
https://xrootd.slac.stanford.edu/doc/dev53/cms_config.htm

February 7, 2022 17 NSDF Presentation

DFS Clusters

These are clusters of

 Servers who all export the same DFS

 Distributes File System

 Proxy servers

 Proxy servers all with a cache
 Xcache

Tuning knob is cms.dfs directive
 https://xrootd.slac.stanford.edu/doc/dev53/cms_config.htm#_Toc53611070

https://xrootd.slac.stanford.edu/doc/dev53/cms_config.htm
https://xrootd.slac.stanford.edu/doc/dev53/cms_config.htm

February 7, 2022 18 NSDF Presentation

Subordinate Clusters

These are local cluster of servers

 Need to be part of another local cluster

Subordinate resources are independent

 This allows mixing cluster types

 E.G. A DFS cluster can be a member of a non-DFS
cluster (but not the other way around)

Defined by the cms.subcluster directive
 https://xrootd.slac.stanford.edu/doc/dev53/cms_config.htm#_Toc53611099

https://xrootd.slac.stanford.edu/doc/dev53/cms_config.htm
https://xrootd.slac.stanford.edu/doc/dev53/cms_config.htm

February 7, 2022 19 NSDF Presentation

Federated Clusters

Cluster of administratively independent
clusters anywhere in the world

 Headed by a Meta-Manager

 Managers of each site cluster subscribe to the
Meta-Manager (the federation head node)

 Examples:

 CMS AAA

 OSG Xcache CDN
 https://display.opensciencegrid.org/

https://display.opensciencegrid.org/
https://display.opensciencegrid.org/

February 7, 2022 20 NSDF Presentation

Cluster deployment practices

How you deploy depends on what it is

 Local vs. regional vs. US vs. world cluster

 Data servers vs. Proxies vs. Caching proxies

 Native vs. containers

 If containers the management scheme (e.g. k8s)

Considerations discussed in references

 Under each type of server

OSG can be of immense help here

February 7, 2022 21 NSDF Presentation

What about data server nodes?

The easiest of all to deploy

 Fairly straightforward like an NFS box

 Using real HD’s (JBOD or otherwise)?
 Want QOS or grow and shrink the space?

 See the oss.space directive
• https://xrootd.slac.stanford.edu/doc/dev54/ofs_config.htm#_Toc89982406

 Using tape?
 Want automatic staging & migration?

• See File Residency Manager Reference
• https://xrootd.slac.stanford.edu/doc/dev50/frm_config.htm

https://xrootd.slac.stanford.edu/doc/dev54/ofs_config.htm
https://xrootd.slac.stanford.edu/doc/dev54/ofs_config.htm
https://xrootd.slac.stanford.edu/doc/dev50/frm_config.htm
https://xrootd.slac.stanford.edu/doc/dev50/frm_config.htm

February 7, 2022 22 NSDF Presentation

Networking Considerations

IPv6 and IPv4 fully supported

However, there still is your topology

 Firewalls

 You may need to deploy proxy servers

 Private vs. public networks

 You may need to specify the relationship mix
 Usually due to non-standard deployments

 See xrd.network directive
• https://xrootd.slac.stanford.edu/doc/dev53/xrd_config.htm#_network

https://xrootd.slac.stanford.edu/doc/dev53/xrd_config.htm
https://xrootd.slac.stanford.edu/doc/dev53/xrd_config.htm

February 7, 2022 23 NSDF Presentation

Security Considerations

This is the hardest part, as always
 Decide on authentication

 X509 and Kerberos are most popular today
 Can have more than one available or none at all

• If using JWT’s (e.g. SciTokens)

 Decide on authorization
 Built-in identity based authorization popular

 JWT’s are fast moving up the list
 SciTokens fully supported for xroots and https

• But it’s still a moving target

 https://xrootd.slac.stanford.edu/doc/dev54/sec_config.htm

https://xrootd.slac.stanford.edu/doc/dev54/sec_config.htm
https://xrootd.slac.stanford.edu/doc/dev54/sec_config.htm

February 7, 2022 24 NSDF Presentation

Operational Considerations I

Monitoring is your friend

 XRootD has robust full-featured monitoring

 However, you must supply collector & visualizer
 See OSG for collector and recommended visualizer

 A number of directives apply
 https://xrootd.slac.stanford.edu/doc/dev54/xrd_config.htm#_Toc88513955

 https://xrootd.slac.stanford.edu/doc/dev54/xrd_config.htm#_Toc88513988

 What’s missing?

 Alerts, we never could get agreement on it
 Many sites drive it via monitoring aberrations

https://xrootd.slac.stanford.edu/doc/dev54/xrd_config.htm
https://xrootd.slac.stanford.edu/doc/dev54/xrd_config.htm
https://xrootd.slac.stanford.edu/doc/dev54/xrd_config.htm
https://xrootd.slac.stanford.edu/doc/dev54/xrd_config.htm

February 7, 2022 25 NSDF Presentation

Operational Considerations II

One config file rules the world!

 Try very hard to have a single config file

 One file for all types of nodes in a site helps!
 Eliminates divergence promotes consistency

 The config file has if/else/fi features to make it possible
• https://xrootd.slac.stanford.edu/doc/dev49/Syntax_config.htm

 The cconfig command is your helper
 Displays actual config file in server’s context

• Host, instance, and whether cmsd or xrootd

• Can be run from anywhere

February 7, 2022 26 NSDF Presentation

Operational Considerations III

Consider enabling remote debugging

 Very useful for large deployments

 Provides standardized view of server internals
 Config file, core files, log files, process info

 Regardless of server layout you always get same view

 Can add additional views or restrict native views

 Allowed for authenticated authorized users

 Can only be used against a running server
 https://xrootd.slac.stanford.edu/doc/dev54/xrd_config.htm#_diglib

https://xrootd.slac.stanford.edu/doc/dev54/xrd_config.htm
https://xrootd.slac.stanford.edu/doc/dev54/xrd_config.htm

February 7, 2022 27 NSDF Presentation

Transition to developers

Next set of slides is a deep dive

 Architecture

 Request/response flow

 What to be careful about

Your chance to ditch

 If you don’t want an internal deep dive

XRootD Plug-in Architecture

28

 Storage System

HDFS gpfs Lustre UFS, …

Authentication

krb5 sss x.509 …

Clustering
(cmsd)

Authorization
 Entity Names

Logical File System

dpm sfs sql …

Protocol

cms http xroot …

Protocol Driver

Any n protocols

February 7, 2022 29 NSDF Presentation

Why Plug-ins?

Makes it much easier to

 Adapt, customize, add new features

Any cons?

 Need to know available plug-in points

 These are documented but not in one spot
 Described under the relevant directive

• Usually xxxlib (e.g. xrootd.fslib)

 However, we did make it a bit easier….

February 7, 2022 30 NSDF Presentation

The plug-in points

A lot and more plug-ins than points!

Get a list using xrdpinls command
>xrdpinls
Required >= 5.0 @logging
Optional >= 5.0 bwm.policy

Required >= 5.0 cms.perf
Required >= 5.0 cms.vnid
Optional >= 5.0 gsi-authzfun
Optional >= 5.0 gsi-gmapfun
Optional >= 5.0 gsi-vomsfun

Required >= 4.8 http.exthandler
Required >= 4.0 http.secxtractor
Required >= 5.0 ofs.authlib
Required >= 5.0 ofs.ckslib
Required >= 5.0 ofs.cmslib

Required >= 5.0 ofs.ctllib
Required >= 5.0 ofs.osslib
Required >= 5.0 ofs.preplib
Required >= 5.0 ofs.xattrlib

Optional >= 5.0 oss.namelib
Required >= 5.0 oss.statlib
Optional >= 5.0 pfc.decisionlib

Required >= 5.0 pss.cachelib
Required >= 5.0 pss.ccmlib
Required >= 5.0 sec.protocol
Required >= 5.0 sec.protocol-gsi
Required >= 5.0 sec.protocol-krb5

Required >= 5.0 sec.protocol-pwd
Required >= 5.0 sec.protocol-sss
Required >= 5.0 sec.protocol-unix
Untested >= 5.0 xrd.protocol
Required >= 5.0 xrdcl.monitor

Required >= 5.0 xrdcl.plugin
Required >= 5.0 xrootd.fslib
Required >= 5.0 xrootd.seclib

32 but actual 27

BTW are missing a few
due to forgetfulness.

Will be corrected!

February 7, 2022 31 NSDF Presentation

Plug-in points explained I

@logging

bwm.policy

cms.perf

cms.vnid

gsi-authzfun
gsi-gmapfun

gsi-vomsfun

http.exthandler

http.secxtractor

ofs.authlib
ofs.ckslib

ofs.cmslib

ofs.ctllib

ofs.osslib

ofs.preplib

Log message handler (server – cli option)

Network bandwidth management policy

Performance monitor for cmsd (not script based)

Virtual network identifier generator for cms

Specialized gsi authz function
Specialized gsi gridmap function

Specialized gsi VOMS function

HTTP post processing handler

HTTPS security information extraction

Authorization plug-in
Checksum plug-in (individual and manager)

Cluster management service client plug-in

Specialized file system control plug-in

Storage system plug-in

Prepare request plug-in

February 7, 2022 32 NSDF Presentation

Plug-ins points explained II

ofs.xattrlib

oss.namelib

oss.statlib

pfc.decisionlib

pss.cachelib
pss.ccmlib

sec.protocol

xrd.protocol

xrdcl.monitor

xrdcl.plugin
xrootd.fslib

xrootd.seclib

Extended attribute handler plug-in

Name mapping plug-in

Functional stat() plug-in

Cache purging decision plug-in

Cache implementation plug-in
Cache context management plug-in

Authentication protocol plug-in (overloaded)

Communications protocol plug-in (overloaded)

Client-side action monitor plug-in

Client-side API implementation plug-in
File system plug-in

Security manager plug-in

February 7, 2022 33 NSDF Presentation

Architectural Plug-in Interplay

Network I/O
TLS

Scheduling

Threading
Buffer

Management
Protocol

Driver

Protocol
Implementation
Authentication

FS-Style Logical
Resource Access

Authorization
Clustering

Check pointing
Check summing

TPC & Tape
Orchestration

Base Driver
(main)

Physical Media

Arbitrary
Remote Request

Execution

FS-Style
Resource Implementation

Network Media

Local Caching

File Residency
Management

Functional
Extensions

Client Access

Not shown are wrapper plug-ins
(e.g. XrdThrottle for XrdOfs and

XrdMultiuser for XrdOssApi)

Framework allows arbitrary wrapping
via stacked plug-ins

XrdOfs

XrdSfs
(virtual I/F)

Protocol Bridge

XrdSsi

XrdPss XrdPosix
(XrdCl Gateway)

XrdFr[c|m] XrdOssAPI

XrdOss
(virtual I/F)

XrdProtocol
(Virtual I/F)

XrdXrootd
(xroot protocol)

XrdHttp
(http protocol)

Xrd

XrdPfc
(XrdOucCache)

February 7, 2022 34 NSDF Presentation

It starts with a client handshake

Upon success client sends info request
 Server returns capabilities and security reqs

 Client configures connection for server capabilities
 This is when TLS & request signing are established

• The connection may convert to using TLS here

 Client issues login request
 The server may then ask for authentication

 This is a negotiable process

• Server supplies list of supported protocols

• Client needs to eventually pick one that works

 Upon success client can start issuing requests

Handshake used to determine
protocol to be used

February 7, 2022 35 NSDF Presentation

Typical request/response flow

Data arrives
Thread dispatched

Forward handling to
the associated

protocol
 XrdPoller

 XrdScheduler
XrdLink

Decode request
Forward to SFS
Send response

Another request?
If no give up thread

XrdProtocol
XrdXrootdProtocol

XrdXrootdProtocolXeq

Apply authorization
Check for redirects
(only if clustering)

Forward to OSS
plugin

XrdSfsInterface
XrdOfs

Execute request
Return result

XrdOss XrdOssApi

This is run to completion semantics and is the most cost-effective way of
handling large numbers of clients; though it is thread intensive.

However, exceptions are allowed for certain long running requests.

February 7, 2022 36 NSDF Presentation

That looks simple enough!

Be careful, many requests are not simple
 Verify request signature if signing enabled

 Does request perform I/O (explicit or implicit)?
 Eligible for asynchronous execution?

 Segment request and run segments in parallel

 Does request require data checksums?
 Generate or verify checksums on the fly

 Should file be check pointed prior to modification?
 If so, rollback changes upon failure

All of these are run-time actions

February 7, 2022 37 NSDF Presentation

Can even be complicated in SFS

Certain requests are “call back” eligible
 The logical fs uses for long running tasks

 E.G. checksums

 Typical SFS plug-in scenario
 Start operation on new thread

 Return result as “operation started”

 Protocol tells client to wait for a resp call back

 When operation completes SFS issues an async
call back to the protocol with the result

 Result is then sent to the client in a call back

Client can issue
additional requests
while waiting for a

request callback!

February 7, 2022 38 NSDF Presentation

More on callbacks

Eligible requests
 close, locate, open, prepare, stat, statx, truncate

 Query for Qopaquf, Qopaqug, Qvisa, Qxattr

 Pointer to callback object passed via error obj
 Callback performs all synchronization

 Avoids sending result before callback response sent

 Typically used to accommodate tape systems
 The oss plug-in can ask for an async callback too

 Done by returning -EINPROGRESS on file open

• Done for file staging from tape

February 7, 2022 39 NSDF Presentation

The I/O architecture I

Three types of read requests

 read (async or sync)

 This the one most used

 readv (only sync)
 Used to aggregate many small reads

 Root file applications use this most often

 pgread (async or sync)

 Provides data checksums for transport integrity
 Used by Xcache and xrdcp

February 7, 2022 40 NSDF Presentation

The I/O architecture II

Three types of write requests

 write (async or sync)

 This the one most used

 writev (only sync)
 Used to aggregate many small writes

 Practically no one uses this so far

 pgwrite (async or sync)

 Provides data checksums for transport integrity
 Used by xrdcp

February 7, 2022 41 NSDF Presentation

Standard read & write (sync)

Reads and writes of data from/to socket

 By default uses up to a 2 MB buffer

 That means data is segmented in 2MB units

 Can use secret option for any size you want
 Secret because sites would misuse this option

 Practical reasons for 2MB default limit

 Buffer allocated using serpentine algorithm
 Minimizes reallocations

 NUMA friendly

February 7, 2022 42 NSDF Presentation

Standard read & write (async)

Reads and writes of data from/to socket

 By default uses 64KB buffers

 That means data is segmented in 64KB units

 Can set segment size to arbitrary length
 64KB used is to avoid store/forward latency

 Train algorithm used to schedule buffers
 Default is 8 cars but can configure it

 See xrootd.async directive
• https://xrootd.slac.stanford.edu/doc/dev53/xrd_config.htm#_Toc60181783

https://xrootd.slac.stanford.edu/doc/dev53/xrd_config.htm
https://xrootd.slac.stanford.edu/doc/dev53/xrd_config.htm

February 7, 2022 43 NSDF Presentation

Why 64K async read size

Store/Forward effect in proxy servers
 This also includes Xcache
Client

Read 1MB
Respond 1MB

Proxy
Read 1MB
Send 1MB

Data Server
Send 1MB RTT x RTT y

Total RTT x+y

Client
Read 1MB

Respond 1MB

Proxy
Read 64KB*16
Send 64KB*16

Data Server
Send 64KB*16 RTT x RTT y

Total RTT (x+y)/16

Chunking a read keeps the pipe full
 Almost streaming but at a lower CPU cost

 Aggregate performance can be achieved

February 7, 2022 44 NSDF Presentation

Why a default of 8 buffers

The train of 8 based US consideration

 Minimize latency between east & west coasts

 Works for the US

 Not ideal for international links
 Likely 2x increase in parallel buffer usage

• But we have not got any complaints

Async I/O only used for network devices

February 7, 2022 45 NSDF Presentation

Standard Read optimization

A read can also supply a pre-read list

 Vector of (file_handle, length, offset)

 Data to make ready for a subsequent read
 I.E. data will be in memory for the next read

 Note that data can come from multiple files

 Vector is limited to 1024 items

 No one uses this so far

 Which is good because it has issues
 Historical artifacts that should be corrected

• Then we can add it to xrdcp

February 7, 2022 46 NSDF Presentation

Vector reads and writes (sync)

Application supplies a vector
 (file_handle, length, offset)

 Allows read/writes from/to multiple files
 No one uses this feature as far as we know

 Maximum item length is 2MB-16
 Why -16? Results are framed as they can be unordered

 Maximum vector length is 1024

Only useful for certain applications
 Xcache never uses it because all reads are big

 It unrolls vector reads to page size units

February 7, 2022 47 NSDF Presentation

Why no async for vector reads

Trade off between read size & latency

 Typically we need at least 64KB of data

 Less and overhead may swamp latency

Implementation simplicity

 Async I/O in a multi-file request is hard

 Given that most reads are small we ditched it

February 7, 2022 48 NSDF Presentation

Page read/write

These are page aligned reads/writes

 4K pages on 4K boundaries

 Does allow misalignment for 1st page

 Each page is check summed using crc32c
 crc32c is hardware assisted and really fast

 Client/server perform on-the-fly correction
 Reads: client rereads pages in error

 Writes: server supplies pages in error to rewrite

February 7, 2022 49 NSDF Presentation

Why page read/write

Transmission errors do occur
 Some not caught by the TCP 16 bit checksum

 Reports of errors on international links
 Typically during high usage periods

 Avoids retransmission of large files (> 10GB)
 When only a few bits are corrupted

 Avoids having sticky errors in Xcache
 A serious concern in a long-lived page cache

Page read/write correct data in 4K units
 Good size for crc32c

February 7, 2022 50 NSDF Presentation

Page read/write sync vs. async

Checksum processing restricts I/O size

 Sync: 2,093,056 max bytes per I/O seg

 Accounts for checksum overhead
 Data + checksums ~= 2 MB (max default buffer size)

• 2093056/4096 = 511

• 511*4+2093056 = 2095100

• 52 bytes shy of 2MB

 Async: 64K per I/O segment

 Sweet spot to minimize latency

 Values cannot be adjusted

February 7, 2022 51 NSDF Presentation

Final Notes on Async I/O

Async only enabled for networked devices

 Linux async I/O useless for locally attached disk

 Implemented at user level via threads

May change with new io_uring interface

 Available since Linux Kernel version 5.1

 Unfortunately, Red Hat has yet to get to that version
 RH 8.5 (the latest release) uses 4.18

But seems to be a very long way off

February 7, 2022 52 NSDF Presentation

The network oriented features

XRootD was developed for networks
 The design goals were

 Minimize bandwidth usage
 Don’t send unnecessary data

 Maximize bandwidth utilization
 Optimally use what you have to the fullest extent

 Work around network & server failures
 Automatic recovery whenever possible (usually can)

 Be flexible
 Adapt to the ever changing network configurations

 Let’s see what we did

February 7, 2022 53 NSDF Presentation

Network bandwidth usage I

Protocol has exceedingly low framing overhead
 24 bytes for a request and 8 bytes for a response

 Application data is typically 99.99% of the packet

Does it really matter?
 Depends on who you are and what you are doing

 If you sell bandwidth it’s a lousy protocol
 XRootD tries to minimize bandwidth waste

 If you buy bandwidth it definitely may matter
 When doing random small sized reads it likely matters

• This is typical for many HEP/Astro analysis jobs

 But when transferring multi-gigabyte files, not really

Protocol can easily fill a 100Gb pipe in aggregate
 xrootd server architecture favors aggregate performance

February 7, 2022 54 NSDF Presentation

Network bandwidth usage II

Xcache may be used to further lower B/W usage
 XRootD software component similar to Squid

 Provides high performance multi-threaded disk file block caching
 Something that Squid was not designed to do

 Suitable for locales where data is reused
 Typically analysis farms that fetch data over the WAN

 Some sites have reported a 40% reduction of WAN usage
 On average there is a 20% reduction in typical HEP use cases

 Two factors in HEP make Xcache useful
 Many applications only use 30-50% of a file

 Xcache only transfers the part of the file that an application actually needs

 Analysis jobs are rerun several times with different parameters
 Much of the same data is needed in a subsequent run

February 7, 2022 55 NSDF Presentation

Network bandwidth usage III

Xcache can be configured to better use LAN resources
 This is specific to HPC’s but the usual setup is as follows

Xcache @ DTN Analysis Job

Lustre

File data read from internet
in desired priority order

File data cached in Lustre
Aggressive prefetching enabled

Job redirected to Lustre
when complete file is cached

Fast RDMA

Data delivered
to job as soon
as it arrives

Slow TCP

HPC Cluster

February 7, 2022 56 NSDF Presentation

Network bandwidth usage IV

In XRootD 5.x provides data-in-motion integrity
 Driven by Xcache requirement to avoid caching dirty data

 Implemented via pgread requests when not using TLS
 When TLS is being used falls back to standard read and local checksums

 Each 4K block is protected by a H/W assisted CRC32C checksum

Checksum errors are corrected on-the-fly
 When reading the client requests retransmission

 When writing the server requests retransmission

Data-at-rest integrity (in future release)
 Can configure XRootD to save network checksums

 Data can be checked upon reading (Xcache) from disk

 Network checksum can be reused for transfers

February 7, 2022 57 NSDF Presentation

Network bandwidth utilization

XRootD supports multiple data streams

 An application may get up to 15 additional data streams

 Useful for improving the speed of WAN file transfers

 This has been well documented and is a way to mitigate TCP recovery of dropped packets

 Multiple data streams are also used to mitigate TLS performance

 The protocol naturally splits into control and data streams

 Control stream is encrypted

 Data stream is not encrypted unless required by the site to be so

 This is automatically handled for the application

 Site requirements may force all data to be encrypted

• This is negotiated between the client and server

February 7, 2022 58 NSDF Presentation

Network tuning

See the xrd.network directive

 Rich set of tuning options
 https://xrootd.slac.stanford.edu/doc/dev53/xrd_config.htm#_network

 Defaults, though usually work quite well

 May need adjustment in certain environments
 For example, k8s or VM’s

https://xrootd.slac.stanford.edu/doc/dev53/xrd_config.htm
https://xrootd.slac.stanford.edu/doc/dev53/xrd_config.htm

February 7, 2022 59 NSDF Presentation

Container orchestration support

XRootD supports container orchestration

 Typical ones are Kubernetes (k8s) or Swarm

 Both introduce issues for network clustered services

 Virtual networking

 IP address is arbitrary and can unpredictably change

 Dynamic DNS

 IP addresses are dynamically added and removed

 Registration is essentially ephemeral

 Supporting orchestration requires some rethinking

 XRootD provides configurable options to address these issues

 Essentially, the IP address is no longer a useful management tool

February 7, 2022 60 NSDF Presentation

Virtual networking support

Virtual networks need virtual namespaces

 XRootD implements such a namespace

 Site assigns accessible resources relative unique names

 Normally we think of a resource as a server but it’s no longer relevant

 For file system based services it’s actually the file system

 Any server can export any file system via orchestration

 For non data services (e.g. via SSI) it’s usually the server

 See the cms.vnid directive

 https://xrootd.slac.stanford.edu/doc/dev53/cms_config.htm#_Toc53611101

 This name is called a vnid

https://xrootd.slac.stanford.edu/doc/dev53/cms_config.htm
https://xrootd.slac.stanford.edu/doc/dev53/cms_config.htm

February 7, 2022 61 NSDF Presentation

Virtual Networking ID (vnid)

The Virtual Network ID (vnid)

 Clustering component tracks resources by vnid not IP address

 It also makes sure that the xrootd - cmsd pair is consistent

 That they are looking at the same file system which might not be the case anymore

 We do not recommend virtual networking due to overhead

 Commercial cloud providers have substantially reduced the overhead

 Open software solutions have not

February 7, 2022 62 NSDF Presentation

Dynamic DNS support

DNS entries are now a spur of the moment thing

 Orchestration frameworks register IP address whenever

 Registration can occur in any order irrespective of any other server

 If you tell xrootd’s and cmsd’s that DNS is dynamic

 Mitigation is enabled for delayed registration
 This prevents failures that would normally be expected to occur in a real network

• For instance, a non-registered service is configured

 See xrd.network dyndns

 https://xrootd.slac.stanford.edu/doc/dev53/xrd_config.htm#_network

XRootD is very comfortable with the cloud

 With containerization features sites have deployed cloud clusters

https://xrootd.slac.stanford.edu/doc/dev53/xrd_config.htm
https://xrootd.slac.stanford.edu/doc/dev53/xrd_config.htm

February 7, 2022 63 NSDF Presentation

Other net oriented features

Full-fledged clustered proxy server support
 Scalable load-sensitive mechanism to deal with firewalls

Configurable TCP keep alive support
 Additionally, idle socket timeout with forced close

 Addresses typical “close_wait” issues with certain VM clients

Full support for public/private 4/6 IP networks
 Site can optionally describe its IP address rules

 Used by the clustering component to route requests
 Automatic matching of compatible addresses for routing
 Can be used to minimize internal network hops

 Allows use of a preferred interface when possible

 Largely to accommodate HPC centers with unique networks
 Currently used at GSI, Darmstadt

February 7, 2022 64 NSDF Presentation

Enhanced Write Support (backend)

Distributed write recovery

 For systems that support it (e.g. EOS)

 Eliminates full file retransmission upon error
 Writes can proceed using another data server

• Normally writes are tied to the server of 1st write

Part of XRootD file copy framework

 Automatically extends to gfal and xrdcp

February 7, 2022 65 NSDF Presentation

XcacheH plug-in (coming soon)

Accessing Xcache origins using http[s]
 Broadens data access reach

 Oriented toward multi-discipline sites

 Can be used as a Squid replacement
 Better performance and scalability

 Based on the plug-in by Radu Popescu
 Formerly at CERN now at Proton Tech AG

 Further developed by Wei Yang - SLAC

 Prototype being tested by ESNET & ESCAPE

February 7, 2022 66 NSDF Presentation

Erasure coding client plug-in

Client side plug-in to support EC writes

 Based on Intel ISAL

 Hardware accelerated encoding

 Leverages XRootD pgWrite capability

 Data in motion integrity with recoverability

Driven by ALICE requirements

 Direct writes from the DAQ system to file store

Developed by Michal Simon (CERN IT-ST-PDS)

February 7, 2022 67 NSDF Presentation

Conclusion

XRootD is facile, flexible, and sound

 Applicable to a wide variety of problems

 Current release is 5.4.0 (wait until 5.4.1)

 Next release 5.5.0 at the end of April

Our core partners



 Community & funding partners (not a complete list)



 Funding f rom US Department of Energy contract DE-AC02-76SF00515 with Stanford University

